Christiana Abiola, Joo-Han Gwak, Ui-Ju Lee, Samuel Imisi Awala, Man-Young Jung, Woojun Park, Sung-Keun Rhee
{"title":"土壤氨氧化古细菌在暴露于空气的固体表面上的生长。","authors":"Christiana Abiola, Joo-Han Gwak, Ui-Ju Lee, Samuel Imisi Awala, Man-Young Jung, Woojun Park, Sung-Keun Rhee","doi":"10.1093/ismeco/ycae129","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microorganisms often thrive as microcolonies or biofilms within pores of soil aggregates exposed to the soil atmosphere. However, previous studies on the physiology of soil ammonia-oxidizing microorganisms (AOMs), which play a critical role in the nitrogen cycle, were primarily conducted using freely suspended AOM cells (planktonic cells) in liquid media. In this study, we examined the growth of two representative soil ammonia-oxidizing archaea (AOA), <i>Nitrososphaera viennensis</i> EN76 and \"<i>Nitrosotenuis chungbukensis</i>\" MY2, and a soil ammonia-oxidizing bacterium, <i>Nitrosomonas europaea</i> ATCC 19718 on polycarbonate membrane filters floated on liquid media to observe their adaptation to air-exposed solid surfaces. Interestingly, ammonia oxidation activities of <i>N. viennensis</i> EN76 and \"<i>N. chungbukensis</i>\" MY2 were significantly repressed on floating filters compared to the freely suspended cells in liquid media. Conversely, the ammonia oxidation activity of <i>N. europaea</i> ATCC 19718 was comparable on floating filters and liquid media. <i>N. viennensis</i> EN76 and <i>N. europaea</i> ATCC 19718 developed microcolonies on floating filters. Transcriptome analysis of <i>N. viennensis</i> EN76 floating filter-grown cells revealed upregulation of unique sets of genes for cell wall and extracellular polymeric substance biosynthesis, ammonia oxidation (including ammonia monooxygenase subunit C (<i>amoC3</i>) and multicopper oxidases), and defense against H<sub>2</sub>O<sub>2</sub>-induced oxidative stress. These genes may play a pivotal role in adapting AOA to air-exposed solid surfaces. Furthermore, the floating filter technique resulted in the enrichment of distinct soil AOA communities dominated by the \"Ca. Nitrosocosmicus\" clade. Overall, this study sheds light on distinct adaptive mechanisms governing AOA growth on air-exposed solid surfaces.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"4 1","pages":"ycae129"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Growth of soil ammonia-oxidizing archaea on air-exposed solid surface.\",\"authors\":\"Christiana Abiola, Joo-Han Gwak, Ui-Ju Lee, Samuel Imisi Awala, Man-Young Jung, Woojun Park, Sung-Keun Rhee\",\"doi\":\"10.1093/ismeco/ycae129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil microorganisms often thrive as microcolonies or biofilms within pores of soil aggregates exposed to the soil atmosphere. However, previous studies on the physiology of soil ammonia-oxidizing microorganisms (AOMs), which play a critical role in the nitrogen cycle, were primarily conducted using freely suspended AOM cells (planktonic cells) in liquid media. In this study, we examined the growth of two representative soil ammonia-oxidizing archaea (AOA), <i>Nitrososphaera viennensis</i> EN76 and \\\"<i>Nitrosotenuis chungbukensis</i>\\\" MY2, and a soil ammonia-oxidizing bacterium, <i>Nitrosomonas europaea</i> ATCC 19718 on polycarbonate membrane filters floated on liquid media to observe their adaptation to air-exposed solid surfaces. Interestingly, ammonia oxidation activities of <i>N. viennensis</i> EN76 and \\\"<i>N. chungbukensis</i>\\\" MY2 were significantly repressed on floating filters compared to the freely suspended cells in liquid media. Conversely, the ammonia oxidation activity of <i>N. europaea</i> ATCC 19718 was comparable on floating filters and liquid media. <i>N. viennensis</i> EN76 and <i>N. europaea</i> ATCC 19718 developed microcolonies on floating filters. Transcriptome analysis of <i>N. viennensis</i> EN76 floating filter-grown cells revealed upregulation of unique sets of genes for cell wall and extracellular polymeric substance biosynthesis, ammonia oxidation (including ammonia monooxygenase subunit C (<i>amoC3</i>) and multicopper oxidases), and defense against H<sub>2</sub>O<sub>2</sub>-induced oxidative stress. These genes may play a pivotal role in adapting AOA to air-exposed solid surfaces. Furthermore, the floating filter technique resulted in the enrichment of distinct soil AOA communities dominated by the \\\"Ca. Nitrosocosmicus\\\" clade. Overall, this study sheds light on distinct adaptive mechanisms governing AOA growth on air-exposed solid surfaces.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"4 1\",\"pages\":\"ycae129\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycae129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Growth of soil ammonia-oxidizing archaea on air-exposed solid surface.
Soil microorganisms often thrive as microcolonies or biofilms within pores of soil aggregates exposed to the soil atmosphere. However, previous studies on the physiology of soil ammonia-oxidizing microorganisms (AOMs), which play a critical role in the nitrogen cycle, were primarily conducted using freely suspended AOM cells (planktonic cells) in liquid media. In this study, we examined the growth of two representative soil ammonia-oxidizing archaea (AOA), Nitrososphaera viennensis EN76 and "Nitrosotenuis chungbukensis" MY2, and a soil ammonia-oxidizing bacterium, Nitrosomonas europaea ATCC 19718 on polycarbonate membrane filters floated on liquid media to observe their adaptation to air-exposed solid surfaces. Interestingly, ammonia oxidation activities of N. viennensis EN76 and "N. chungbukensis" MY2 were significantly repressed on floating filters compared to the freely suspended cells in liquid media. Conversely, the ammonia oxidation activity of N. europaea ATCC 19718 was comparable on floating filters and liquid media. N. viennensis EN76 and N. europaea ATCC 19718 developed microcolonies on floating filters. Transcriptome analysis of N. viennensis EN76 floating filter-grown cells revealed upregulation of unique sets of genes for cell wall and extracellular polymeric substance biosynthesis, ammonia oxidation (including ammonia monooxygenase subunit C (amoC3) and multicopper oxidases), and defense against H2O2-induced oxidative stress. These genes may play a pivotal role in adapting AOA to air-exposed solid surfaces. Furthermore, the floating filter technique resulted in the enrichment of distinct soil AOA communities dominated by the "Ca. Nitrosocosmicus" clade. Overall, this study sheds light on distinct adaptive mechanisms governing AOA growth on air-exposed solid surfaces.