{"title":"LGS-PPIS:用于预测蛋白质-蛋白质相互作用位点的局部-全局结构信息聚合框架。","authors":"Zhengli Zhai, Shiya Xu, Wenjian Ma, Niuwangjie Niu, Chunyu Qu, Chao Zong","doi":"10.1002/prot.26763","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring protein-protein interaction sites (PPIS) is of significance to elucidating the intrinsic mechanisms of diverse biological processes. On this basis, recent studies have applied deep learning-based technologies to overcome the high cost of wet experiments for PPIS determination. However, the existing methods still suffer from two limitations that remain to be solved. Firstly, the process of feature aggregation in most methods only took into account node features, but ignored the complex edge features of the target residue to its neighbor residues, resulting in insufficient local feature extraction. Secondly, such feature aggregation was limited to aggregating spatially adjacent residues, and could not capture the \"remote\" residues that played a critical role in determining PPIS, which can be summed up as the lack of global feature at the residue level. To break the above limitations, a local-global structural information aggregation framework, LGS-PPIS, was proposed in this study, including two modules of edge-aware graph convolutional network (EA-GCN) and self-attention integrated with initial residual and identity mapping (SA-RIM), which achieved the aggregation of local and global information for PPIS prediction. Evaluation results of LGS-PPIS showed that the proposed method outperformed state-of-the-art deep learning methods on three widely used PPIS prediction benchmarks. Besides, the results of ablation experiments demonstrated that the local features from spatially adjacent residues and global features from \"remote\" residues separately captured by EA-GCN and SA-RIM could benefit the model performance. Among them, the former was shown to have a more significant role in the PPIS prediction.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LGS-PPIS: A Local-Global Structural Information Aggregation Framework for Predicting Protein-Protein Interaction Sites.\",\"authors\":\"Zhengli Zhai, Shiya Xu, Wenjian Ma, Niuwangjie Niu, Chunyu Qu, Chao Zong\",\"doi\":\"10.1002/prot.26763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exploring protein-protein interaction sites (PPIS) is of significance to elucidating the intrinsic mechanisms of diverse biological processes. On this basis, recent studies have applied deep learning-based technologies to overcome the high cost of wet experiments for PPIS determination. However, the existing methods still suffer from two limitations that remain to be solved. Firstly, the process of feature aggregation in most methods only took into account node features, but ignored the complex edge features of the target residue to its neighbor residues, resulting in insufficient local feature extraction. Secondly, such feature aggregation was limited to aggregating spatially adjacent residues, and could not capture the \\\"remote\\\" residues that played a critical role in determining PPIS, which can be summed up as the lack of global feature at the residue level. To break the above limitations, a local-global structural information aggregation framework, LGS-PPIS, was proposed in this study, including two modules of edge-aware graph convolutional network (EA-GCN) and self-attention integrated with initial residual and identity mapping (SA-RIM), which achieved the aggregation of local and global information for PPIS prediction. Evaluation results of LGS-PPIS showed that the proposed method outperformed state-of-the-art deep learning methods on three widely used PPIS prediction benchmarks. Besides, the results of ablation experiments demonstrated that the local features from spatially adjacent residues and global features from \\\"remote\\\" residues separately captured by EA-GCN and SA-RIM could benefit the model performance. Among them, the former was shown to have a more significant role in the PPIS prediction.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26763\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26763","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
LGS-PPIS: A Local-Global Structural Information Aggregation Framework for Predicting Protein-Protein Interaction Sites.
Exploring protein-protein interaction sites (PPIS) is of significance to elucidating the intrinsic mechanisms of diverse biological processes. On this basis, recent studies have applied deep learning-based technologies to overcome the high cost of wet experiments for PPIS determination. However, the existing methods still suffer from two limitations that remain to be solved. Firstly, the process of feature aggregation in most methods only took into account node features, but ignored the complex edge features of the target residue to its neighbor residues, resulting in insufficient local feature extraction. Secondly, such feature aggregation was limited to aggregating spatially adjacent residues, and could not capture the "remote" residues that played a critical role in determining PPIS, which can be summed up as the lack of global feature at the residue level. To break the above limitations, a local-global structural information aggregation framework, LGS-PPIS, was proposed in this study, including two modules of edge-aware graph convolutional network (EA-GCN) and self-attention integrated with initial residual and identity mapping (SA-RIM), which achieved the aggregation of local and global information for PPIS prediction. Evaluation results of LGS-PPIS showed that the proposed method outperformed state-of-the-art deep learning methods on three widely used PPIS prediction benchmarks. Besides, the results of ablation experiments demonstrated that the local features from spatially adjacent residues and global features from "remote" residues separately captured by EA-GCN and SA-RIM could benefit the model performance. Among them, the former was shown to have a more significant role in the PPIS prediction.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.