减少医疗人工智能中的偏见:白皮书。

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Carolyn Sun, Shannon L Harris
{"title":"减少医疗人工智能中的偏见:白皮书。","authors":"Carolyn Sun, Shannon L Harris","doi":"10.1177/14604582241291410","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Mitigation of racism in artificial intelligence (AI) is needed to improve health outcomes, yet no consensus exists on how this might be achieved. <b>Methods:</b> At an international conference in 2022, experts gathered to discuss strategies for reducing bias in healthcare AI. <b>Results:</b> This paper delineates these strategies along with their corresponding strengths and weaknesses and reviews the existing literature on these strategies. <b>Conclusions:</b> Five major themes resulted: reducing dataset bias, accurate modeling of existing data, transparency of artificial intelligence, regulation of artificial intelligence and the people who develop it, and bringing stakeholders to the table.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing bias in healthcare artificial intelligence: A white paper.\",\"authors\":\"Carolyn Sun, Shannon L Harris\",\"doi\":\"10.1177/14604582241291410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> Mitigation of racism in artificial intelligence (AI) is needed to improve health outcomes, yet no consensus exists on how this might be achieved. <b>Methods:</b> At an international conference in 2022, experts gathered to discuss strategies for reducing bias in healthcare AI. <b>Results:</b> This paper delineates these strategies along with their corresponding strengths and weaknesses and reviews the existing literature on these strategies. <b>Conclusions:</b> Five major themes resulted: reducing dataset bias, accurate modeling of existing data, transparency of artificial intelligence, regulation of artificial intelligence and the people who develop it, and bringing stakeholders to the table.</p>\",\"PeriodicalId\":55069,\"journal\":{\"name\":\"Health Informatics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Informatics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/14604582241291410\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241291410","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:要想改善健康状况,就必须减少人工智能(AI)中的种族主义,但对于如何做到这一点,目前还没有达成共识。方法:在 2022 年的一次国际会议上,专家们齐聚一堂,讨论减少医疗人工智能中偏见的策略。结果:本文阐述了这些策略及其相应的优缺点,并回顾了有关这些策略的现有文献。结论会议提出了五大主题:减少数据集偏差、现有数据的精确建模、人工智能的透明度、人工智能及其开发人员的监管,以及让利益相关者参与讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing bias in healthcare artificial intelligence: A white paper.

Objective: Mitigation of racism in artificial intelligence (AI) is needed to improve health outcomes, yet no consensus exists on how this might be achieved. Methods: At an international conference in 2022, experts gathered to discuss strategies for reducing bias in healthcare AI. Results: This paper delineates these strategies along with their corresponding strengths and weaknesses and reviews the existing literature on these strategies. Conclusions: Five major themes resulted: reducing dataset bias, accurate modeling of existing data, transparency of artificial intelligence, regulation of artificial intelligence and the people who develop it, and bringing stakeholders to the table.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信