{"title":"沉默 CD3D 可通过抑制 JAK/STAT 通路缓解糖尿病肾病。","authors":"Xianghong Lei, Fangqin Zou, Xianhu Tang, Fengxia He, Jiyang Wang, Shengyu Cheng, Xiangxin Lei","doi":"10.1096/fj.202401879R","DOIUrl":null,"url":null,"abstract":"<p>Diabetic nephropathy (DN) is a severe microvascular complication of diabetes that poses a significant burden to global health. This investigation aims to illustrate the functional role of CD3D and its relevant mechanisms in DN progression. The pivotal genes between the GSE47183 and GSE30528 datasets were identified using bioinformatics methods. The effects of CD3D silencing on renal damage, inflammatory response, and lipid metabolism were validated in DN mice. Furthermore, the impacts of CD3D knockdown on cell viability, apoptotic rate, inflammation, and lipid levels were investigated in HK-2 cells under high glucose (HG) conditions. Additionally, RO8191 was employed to investigate the role of CD3D in the JAK/STAT pathway in HG-treated cells. A total of 5 focal genes were identified through bioinformatics and were found to be upregulated in renal tissues from DN mice. CD3D silencing mitigated pathological damage to kidneys, reduced inflammatory response, and decreased lipid accumulation in DN mice. HG stimulation restrained viability, increased apoptosis, promoted the release of inflammatory cytokines, and affected expressions of hallmarks related to lipid metabolism in HG-treated cells; these changes were partially abolished by CD3D knockdown. Mechanistically, CD3D downregulation ameliorated HG-induced injury in HK-2 cells by blocking the JAK/STAT pathway. This study underscores that CD3D silencing has significant potential as a promising candidate in the treatment of DN.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"38 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CD3D silencing alleviates diabetic nephropathy via inhibition of JAK/STAT pathway\",\"authors\":\"Xianghong Lei, Fangqin Zou, Xianhu Tang, Fengxia He, Jiyang Wang, Shengyu Cheng, Xiangxin Lei\",\"doi\":\"10.1096/fj.202401879R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diabetic nephropathy (DN) is a severe microvascular complication of diabetes that poses a significant burden to global health. This investigation aims to illustrate the functional role of CD3D and its relevant mechanisms in DN progression. The pivotal genes between the GSE47183 and GSE30528 datasets were identified using bioinformatics methods. The effects of CD3D silencing on renal damage, inflammatory response, and lipid metabolism were validated in DN mice. Furthermore, the impacts of CD3D knockdown on cell viability, apoptotic rate, inflammation, and lipid levels were investigated in HK-2 cells under high glucose (HG) conditions. Additionally, RO8191 was employed to investigate the role of CD3D in the JAK/STAT pathway in HG-treated cells. A total of 5 focal genes were identified through bioinformatics and were found to be upregulated in renal tissues from DN mice. CD3D silencing mitigated pathological damage to kidneys, reduced inflammatory response, and decreased lipid accumulation in DN mice. HG stimulation restrained viability, increased apoptosis, promoted the release of inflammatory cytokines, and affected expressions of hallmarks related to lipid metabolism in HG-treated cells; these changes were partially abolished by CD3D knockdown. Mechanistically, CD3D downregulation ameliorated HG-induced injury in HK-2 cells by blocking the JAK/STAT pathway. This study underscores that CD3D silencing has significant potential as a promising candidate in the treatment of DN.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"38 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401879R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401879R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CD3D silencing alleviates diabetic nephropathy via inhibition of JAK/STAT pathway
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes that poses a significant burden to global health. This investigation aims to illustrate the functional role of CD3D and its relevant mechanisms in DN progression. The pivotal genes between the GSE47183 and GSE30528 datasets were identified using bioinformatics methods. The effects of CD3D silencing on renal damage, inflammatory response, and lipid metabolism were validated in DN mice. Furthermore, the impacts of CD3D knockdown on cell viability, apoptotic rate, inflammation, and lipid levels were investigated in HK-2 cells under high glucose (HG) conditions. Additionally, RO8191 was employed to investigate the role of CD3D in the JAK/STAT pathway in HG-treated cells. A total of 5 focal genes were identified through bioinformatics and were found to be upregulated in renal tissues from DN mice. CD3D silencing mitigated pathological damage to kidneys, reduced inflammatory response, and decreased lipid accumulation in DN mice. HG stimulation restrained viability, increased apoptosis, promoted the release of inflammatory cytokines, and affected expressions of hallmarks related to lipid metabolism in HG-treated cells; these changes were partially abolished by CD3D knockdown. Mechanistically, CD3D downregulation ameliorated HG-induced injury in HK-2 cells by blocking the JAK/STAT pathway. This study underscores that CD3D silencing has significant potential as a promising candidate in the treatment of DN.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.