利用基于 CT 扫描的统计形状和外观模型对中日友好医院股骨头坏死分类进行计算机辅助诊断。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jinming Zhang, He Gong, Pengling Ren, Shuyu Liu, Zhengbin Jia, Peipei Shi
{"title":"利用基于 CT 扫描的统计形状和外观模型对中日友好医院股骨头坏死分类进行计算机辅助诊断。","authors":"Jinming Zhang, He Gong, Pengling Ren, Shuyu Liu, Zhengbin Jia, Peipei Shi","doi":"10.1007/s11517-024-03239-0","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to quantify the three-dimensional (3D) structural morphology, bone mineral density (BMD) distribution, and mechanical properties of different China-Japan Friendship Hospital (CJFH) classification types and assist clinicians in classifying necrotic femurs accurately. In this study, 41 cases were classified as types L2 and L3 based on CT images. Then, 3D Statistical Shape and Appearance Models (SSM and SAM) were established, and 80 principal component (PC) modes were extracted from the SSM and SAM as the candidate features. The bone strength of each case was also calculated as the candidate feature using finite element analysis (FEA). Support vector machine (SVM) and Extreme Gradient Boosting (XGBoost) were used to establish 10 machine learning models. Feature selection methods were used to screen the candidate features. The performance of each model was evaluated based on sensitivity, specificity, accuracy, and the area under the receiver operating characteristic (ROC) curve. This resulted in a SVM model for CJFH classification with the performance: accuracy of 87.5%, sensitivity of 85.0%, specificity of 76.0%, and AUC of 94.2%. This study provided effective machine learning models for assisting in diagnosing CJFH types, increasing the objectivity of the diagnosis. They may have great potential for application in clinical assessments of CJFH classification.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-aided diagnosis for China-Japan Friendship Hospital classification of necrotic femurs using statistical shape and appearance model based on CT scans.\",\"authors\":\"Jinming Zhang, He Gong, Pengling Ren, Shuyu Liu, Zhengbin Jia, Peipei Shi\",\"doi\":\"10.1007/s11517-024-03239-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study is to quantify the three-dimensional (3D) structural morphology, bone mineral density (BMD) distribution, and mechanical properties of different China-Japan Friendship Hospital (CJFH) classification types and assist clinicians in classifying necrotic femurs accurately. In this study, 41 cases were classified as types L2 and L3 based on CT images. Then, 3D Statistical Shape and Appearance Models (SSM and SAM) were established, and 80 principal component (PC) modes were extracted from the SSM and SAM as the candidate features. The bone strength of each case was also calculated as the candidate feature using finite element analysis (FEA). Support vector machine (SVM) and Extreme Gradient Boosting (XGBoost) were used to establish 10 machine learning models. Feature selection methods were used to screen the candidate features. The performance of each model was evaluated based on sensitivity, specificity, accuracy, and the area under the receiver operating characteristic (ROC) curve. This resulted in a SVM model for CJFH classification with the performance: accuracy of 87.5%, sensitivity of 85.0%, specificity of 76.0%, and AUC of 94.2%. This study provided effective machine learning models for assisting in diagnosing CJFH types, increasing the objectivity of the diagnosis. They may have great potential for application in clinical assessments of CJFH classification.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03239-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03239-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在量化中日友好医院(CJFH)不同分型的三维(3D)结构形态、骨矿物质密度(BMD)分布和力学性能,帮助临床医生对坏死股骨进行准确分型。本研究根据 CT 图像将 41 例病例分为 L2 型和 L3 型。然后建立了三维统计形状和外观模型(SSM和SAM),并从SSM和SAM中提取了80个主成分(PC)模式作为候选特征。此外,还使用有限元分析(FEA)计算了每个病例的骨强度,作为候选特征。使用支持向量机(SVM)和极梯度提升(XGBoost)建立了 10 个机器学习模型。特征选择方法用于筛选候选特征。根据灵敏度、特异性、准确性和接收者操作特征曲线下面积对每个模型的性能进行了评估。最终得出了用于 CJFH 分类的 SVM 模型,其准确率为 87.5%,灵敏度为 85.0%,特异性为 76.0%,AUC 为 94.2%。这项研究为辅助诊断 CJFH 类型提供了有效的机器学习模型,提高了诊断的客观性。它们在 CJFH 分类的临床评估中可能有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer-aided diagnosis for China-Japan Friendship Hospital classification of necrotic femurs using statistical shape and appearance model based on CT scans.

The purpose of this study is to quantify the three-dimensional (3D) structural morphology, bone mineral density (BMD) distribution, and mechanical properties of different China-Japan Friendship Hospital (CJFH) classification types and assist clinicians in classifying necrotic femurs accurately. In this study, 41 cases were classified as types L2 and L3 based on CT images. Then, 3D Statistical Shape and Appearance Models (SSM and SAM) were established, and 80 principal component (PC) modes were extracted from the SSM and SAM as the candidate features. The bone strength of each case was also calculated as the candidate feature using finite element analysis (FEA). Support vector machine (SVM) and Extreme Gradient Boosting (XGBoost) were used to establish 10 machine learning models. Feature selection methods were used to screen the candidate features. The performance of each model was evaluated based on sensitivity, specificity, accuracy, and the area under the receiver operating characteristic (ROC) curve. This resulted in a SVM model for CJFH classification with the performance: accuracy of 87.5%, sensitivity of 85.0%, specificity of 76.0%, and AUC of 94.2%. This study provided effective machine learning models for assisting in diagnosing CJFH types, increasing the objectivity of the diagnosis. They may have great potential for application in clinical assessments of CJFH classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信