{"title":"用直接作用抗病毒药物治疗丙型肝炎病毒感染的细胞增殖 ODEs 多尺度模型。","authors":"Hesham A Elkaranshawy, Hossam M Ezzat","doi":"10.1080/17513758.2024.2423956","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent study, a mathematically identical ODE model is derived from a multiscale PDE model of hepatitis C virus infection, which helps to overcome the limitations of the PDE model in the analysis. Here, an extended proposed model is formulated for this transformed ODE model by including the hepatocyte proliferation of both uninfected and infected cells. Unlike the transformed model, the proposed model can predict the triphasic viral decline and the virus level after therapy cessation without oscillations. Numerical simulations are performed to investigate the effect of hepatocyte proliferation and therapy with direct-acting antivirals agents (DAAs). The basic reproduction number is obtained, the equilibrium points are specified, and their stability is analysed. A bifurcation analysis is performed to specify the bifurcation points and to study the effect of varying system parameters. Various viral load profiles generated by the model are confirmed to fit with reported data in the literature.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2423956"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ODEs multiscale model with cell proliferation for hepatitis C virus infection treated with direct acting antiviral agents.\",\"authors\":\"Hesham A Elkaranshawy, Hossam M Ezzat\",\"doi\":\"10.1080/17513758.2024.2423956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recent study, a mathematically identical ODE model is derived from a multiscale PDE model of hepatitis C virus infection, which helps to overcome the limitations of the PDE model in the analysis. Here, an extended proposed model is formulated for this transformed ODE model by including the hepatocyte proliferation of both uninfected and infected cells. Unlike the transformed model, the proposed model can predict the triphasic viral decline and the virus level after therapy cessation without oscillations. Numerical simulations are performed to investigate the effect of hepatocyte proliferation and therapy with direct-acting antivirals agents (DAAs). The basic reproduction number is obtained, the equilibrium points are specified, and their stability is analysed. A bifurcation analysis is performed to specify the bifurcation points and to study the effect of varying system parameters. Various viral load profiles generated by the model are confirmed to fit with reported data in the literature.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"18 1\",\"pages\":\"2423956\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2024.2423956\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2024.2423956","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
An ODEs multiscale model with cell proliferation for hepatitis C virus infection treated with direct acting antiviral agents.
In a recent study, a mathematically identical ODE model is derived from a multiscale PDE model of hepatitis C virus infection, which helps to overcome the limitations of the PDE model in the analysis. Here, an extended proposed model is formulated for this transformed ODE model by including the hepatocyte proliferation of both uninfected and infected cells. Unlike the transformed model, the proposed model can predict the triphasic viral decline and the virus level after therapy cessation without oscillations. Numerical simulations are performed to investigate the effect of hepatocyte proliferation and therapy with direct-acting antivirals agents (DAAs). The basic reproduction number is obtained, the equilibrium points are specified, and their stability is analysed. A bifurcation analysis is performed to specify the bifurcation points and to study the effect of varying system parameters. Various viral load profiles generated by the model are confirmed to fit with reported data in the literature.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.