不同屏蔽材料的 80、100、120 和 140 kVp 主光束的 CT 散射光谱传输数据。

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
S M Edwards
{"title":"不同屏蔽材料的 80、100、120 和 140 kVp 主光束的 CT 散射光谱传输数据。","authors":"S M Edwards","doi":"10.1007/s13246-024-01494-x","DOIUrl":null,"url":null,"abstract":"<p><p>The shielding of computed tomography (CT) suites has commonly relied on the assumption that the primary beam has the same beam quality and thus penetrability as the scattered radiation. This report expands on a preliminary work that showed scattered radiation from patients having an overall reduced beam quality, with published transmission data for 120 kVp and 140 kVp through lead. Beam quality data of patient scatter spectra for 80 kVp and 100 kVp are uniquely provided herein using the same methodology, expanding the diagnostic energy range. The mean energy of scatter radiation spectra across this 80-140 kVp diagnostic range was found to have a reduction of 13.4-17.9% compared to a primary beam with a defined 9.8 mm Al added filtration. A DOSXYZnrc Monte Carlo program using the EGSnrc photon and electron transport code was subsequently used to simulate the transmission of scattered spectra of all 80, 100, 120 and 140 kVp beams through various commonly used shielding materials, including lead, concrete, steel, plate glass and gypsum wallboard. Transmission data and Archer fitting coefficients for this scattered radiation were calculated and show a reduction in transmission over the range of practical shielding thicknesses for these materials. Transmission through lead was significantly reduced in comparison to the National Council of Radiological Protection (NCRP) and British Institute of Radiology (BIR) methodologies using primary beam spectra, with transmissions reduced between 40.4 and 63.9% for 120 kVp and between 38.1 and 42% for 140 kVp beams over a 0.44-2.64 mm thickness range. The use of CT scatter spectra and their resultant transmission data is recommended for optimal shielding design.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT scatter spectra transmission data of 80, 100, 120 and 140 kVp primary beams for various shielding materials.\",\"authors\":\"S M Edwards\",\"doi\":\"10.1007/s13246-024-01494-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The shielding of computed tomography (CT) suites has commonly relied on the assumption that the primary beam has the same beam quality and thus penetrability as the scattered radiation. This report expands on a preliminary work that showed scattered radiation from patients having an overall reduced beam quality, with published transmission data for 120 kVp and 140 kVp through lead. Beam quality data of patient scatter spectra for 80 kVp and 100 kVp are uniquely provided herein using the same methodology, expanding the diagnostic energy range. The mean energy of scatter radiation spectra across this 80-140 kVp diagnostic range was found to have a reduction of 13.4-17.9% compared to a primary beam with a defined 9.8 mm Al added filtration. A DOSXYZnrc Monte Carlo program using the EGSnrc photon and electron transport code was subsequently used to simulate the transmission of scattered spectra of all 80, 100, 120 and 140 kVp beams through various commonly used shielding materials, including lead, concrete, steel, plate glass and gypsum wallboard. Transmission data and Archer fitting coefficients for this scattered radiation were calculated and show a reduction in transmission over the range of practical shielding thicknesses for these materials. Transmission through lead was significantly reduced in comparison to the National Council of Radiological Protection (NCRP) and British Institute of Radiology (BIR) methodologies using primary beam spectra, with transmissions reduced between 40.4 and 63.9% for 120 kVp and between 38.1 and 42% for 140 kVp beams over a 0.44-2.64 mm thickness range. The use of CT scatter spectra and their resultant transmission data is recommended for optimal shielding design.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01494-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01494-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

计算机断层扫描 (CT) 套件的屏蔽通常依赖于这样一种假设,即主光束具有与散射辐射相同的光束质量和穿透性。这项初步研究表明,患者散射辐射的光束质量总体上有所下降,已公布的 120 kVp 和 140 kVp 穿透铅的透射数据显示,散射辐射的光束质量总体上有所下降。本报告使用相同的方法提供了 80 kVp 和 100 kVp 病人散射光谱的光束质量数据,扩大了诊断能量范围。在 80-140 kVp 诊断范围内,散射辐射光谱的平均能量比添加了 9.8 mm Al 过滤器的主光束降低了 13.4-17.9%。随后,使用 EGSnrc 光子和电子传输代码的 DOSXYZnrc 蒙特卡罗程序模拟了所有 80、100、120 和 140 kVp 光束散射光谱通过各种常用屏蔽材料(包括铅、混凝土、钢、平板玻璃和石膏墙板)的传输情况。计算得出的散射辐射的传输数据和阿彻拟合系数显示,在这些材料的实际屏蔽厚度范围内,传输都有所降低。与美国国家辐射防护委员会(NCRP)和英国放射学会(BIR)使用原束光谱的方法相比,铅的透射率明显降低,在 0.44-2.64 毫米的厚度范围内,120 千伏帕的透射率降低了 40.4% 至 63.9%,140 千伏帕的透射率降低了 38.1% 至 42%。建议使用 CT 散射光谱及其产生的传输数据来优化屏蔽设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CT scatter spectra transmission data of 80, 100, 120 and 140 kVp primary beams for various shielding materials.

The shielding of computed tomography (CT) suites has commonly relied on the assumption that the primary beam has the same beam quality and thus penetrability as the scattered radiation. This report expands on a preliminary work that showed scattered radiation from patients having an overall reduced beam quality, with published transmission data for 120 kVp and 140 kVp through lead. Beam quality data of patient scatter spectra for 80 kVp and 100 kVp are uniquely provided herein using the same methodology, expanding the diagnostic energy range. The mean energy of scatter radiation spectra across this 80-140 kVp diagnostic range was found to have a reduction of 13.4-17.9% compared to a primary beam with a defined 9.8 mm Al added filtration. A DOSXYZnrc Monte Carlo program using the EGSnrc photon and electron transport code was subsequently used to simulate the transmission of scattered spectra of all 80, 100, 120 and 140 kVp beams through various commonly used shielding materials, including lead, concrete, steel, plate glass and gypsum wallboard. Transmission data and Archer fitting coefficients for this scattered radiation were calculated and show a reduction in transmission over the range of practical shielding thicknesses for these materials. Transmission through lead was significantly reduced in comparison to the National Council of Radiological Protection (NCRP) and British Institute of Radiology (BIR) methodologies using primary beam spectra, with transmissions reduced between 40.4 and 63.9% for 120 kVp and between 38.1 and 42% for 140 kVp beams over a 0.44-2.64 mm thickness range. The use of CT scatter spectra and their resultant transmission data is recommended for optimal shielding design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信