Hiroyuki Inuzuka, Chao Qian, Yihang Qi, Yan Xiong, Chaoyu Wang, Zhen Wang, Dingpeng Zhang, Can Zhang, Jian Jin, Wenyi Wei
{"title":"靶向降解受体相互作用蛋白激酶 1 以调节坏死途径","authors":"Hiroyuki Inuzuka, Chao Qian, Yihang Qi, Yan Xiong, Chaoyu Wang, Zhen Wang, Dingpeng Zhang, Can Zhang, Jian Jin, Wenyi Wei","doi":"10.1021/acsptsci.4c00421","DOIUrl":null,"url":null,"abstract":"<p><p>Necroptosis is a highly regulated form of necrotic cell death that plays an essential role in pathogen defense and tissue homeostasis. Abnormal regulation of the necroptotic pathway has been implicated in the pathogenesis of various human diseases, including cancer, inflammatory, and neurodegenerative diseases. Receptor-interacting protein kinase 1 (RIPK1) serves as a crucial regulator of the necroptotic signaling pathway and has been identified as a potential therapeutic target. Mechanistically, RIPK1 serves as both a protein kinase and a scaffolding protein, fulfilling its dual function through a combination of kinase activity-dependent and kinase activity-independent mechanisms. Thus, employing a targeted RIPK1 knockdown strategy is a highly effective means of inhibiting RIPK1 functions. To achieve a targeted RIPK1 knockdown, we generated a RIPK1-PROTAC, MS2031, by connecting the ZB-R-55 RIPK1 binder to the VHL ligand, thereby recruiting the CUL2-RING-VHL (CRL2<sup>VHL</sup>) E3 ubiquitin ligase complex for targeted degradation of RIPK1 through the 26S proteasome. Notably, MS2031 treatment effectively reduced the abundance of RIPK1 protein in the nanomolar range in various cell lines we examined, including HT-29 and T47D cells, and modulated the necroptosis signaling pathway. These results suggest that MS2031 may hold potential for the treatment of human diseases resulting from aberrant regulation of RIPK1.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 11","pages":"3518-3526"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555510/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted Degradation of Receptor-Interacting Protein Kinase 1 to Modulate the Necroptosis Pathway.\",\"authors\":\"Hiroyuki Inuzuka, Chao Qian, Yihang Qi, Yan Xiong, Chaoyu Wang, Zhen Wang, Dingpeng Zhang, Can Zhang, Jian Jin, Wenyi Wei\",\"doi\":\"10.1021/acsptsci.4c00421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Necroptosis is a highly regulated form of necrotic cell death that plays an essential role in pathogen defense and tissue homeostasis. Abnormal regulation of the necroptotic pathway has been implicated in the pathogenesis of various human diseases, including cancer, inflammatory, and neurodegenerative diseases. Receptor-interacting protein kinase 1 (RIPK1) serves as a crucial regulator of the necroptotic signaling pathway and has been identified as a potential therapeutic target. Mechanistically, RIPK1 serves as both a protein kinase and a scaffolding protein, fulfilling its dual function through a combination of kinase activity-dependent and kinase activity-independent mechanisms. Thus, employing a targeted RIPK1 knockdown strategy is a highly effective means of inhibiting RIPK1 functions. To achieve a targeted RIPK1 knockdown, we generated a RIPK1-PROTAC, MS2031, by connecting the ZB-R-55 RIPK1 binder to the VHL ligand, thereby recruiting the CUL2-RING-VHL (CRL2<sup>VHL</sup>) E3 ubiquitin ligase complex for targeted degradation of RIPK1 through the 26S proteasome. Notably, MS2031 treatment effectively reduced the abundance of RIPK1 protein in the nanomolar range in various cell lines we examined, including HT-29 and T47D cells, and modulated the necroptosis signaling pathway. These results suggest that MS2031 may hold potential for the treatment of human diseases resulting from aberrant regulation of RIPK1.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 11\",\"pages\":\"3518-3526\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555510/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Targeted Degradation of Receptor-Interacting Protein Kinase 1 to Modulate the Necroptosis Pathway.
Necroptosis is a highly regulated form of necrotic cell death that plays an essential role in pathogen defense and tissue homeostasis. Abnormal regulation of the necroptotic pathway has been implicated in the pathogenesis of various human diseases, including cancer, inflammatory, and neurodegenerative diseases. Receptor-interacting protein kinase 1 (RIPK1) serves as a crucial regulator of the necroptotic signaling pathway and has been identified as a potential therapeutic target. Mechanistically, RIPK1 serves as both a protein kinase and a scaffolding protein, fulfilling its dual function through a combination of kinase activity-dependent and kinase activity-independent mechanisms. Thus, employing a targeted RIPK1 knockdown strategy is a highly effective means of inhibiting RIPK1 functions. To achieve a targeted RIPK1 knockdown, we generated a RIPK1-PROTAC, MS2031, by connecting the ZB-R-55 RIPK1 binder to the VHL ligand, thereby recruiting the CUL2-RING-VHL (CRL2VHL) E3 ubiquitin ligase complex for targeted degradation of RIPK1 through the 26S proteasome. Notably, MS2031 treatment effectively reduced the abundance of RIPK1 protein in the nanomolar range in various cell lines we examined, including HT-29 and T47D cells, and modulated the necroptosis signaling pathway. These results suggest that MS2031 may hold potential for the treatment of human diseases resulting from aberrant regulation of RIPK1.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.