Björn S Siepe, František Bartoš, Tim P Morris, Anne-Laure Boulesteix, Daniel W Heck, Samuel Pawel
{"title":"心理学方法研究的模拟研究:计划、预先登记和报告的标准化模板。","authors":"Björn S Siepe, František Bartoš, Tim P Morris, Anne-Laure Boulesteix, Daniel W Heck, Samuel Pawel","doi":"10.1037/met0000695","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation studies are widely used for evaluating the performance of statistical methods in psychology. However, the quality of simulation studies can vary widely in terms of their design, execution, and reporting. In order to assess the quality of typical simulation studies in psychology, we reviewed 321 articles published in <i>Psychological Methods, Behavior Research Methods, and Multivariate Behavioral Research</i> in 2021 and 2022, among which 100/321 = 31.2% report a simulation study. We find that many articles do not provide complete and transparent information about key aspects of the study, such as justifications for the number of simulation repetitions, Monte Carlo uncertainty estimates, or code and data to reproduce the simulation studies. To address this problem, we provide a summary of the ADEMP (aims, data-generating mechanism, estimands and other targets, methods, performance measures) design and reporting framework from Morris et al. (2019) adapted to simulation studies in psychology. Based on this framework, we provide ADEMP-PreReg, a step-by-step template for researchers to use when designing, potentially preregistering, and reporting their simulation studies. We give formulae for estimating common performance measures, their Monte Carlo standard errors, and for calculating the number of simulation repetitions to achieve a desired Monte Carlo standard error. Finally, we give a detailed tutorial on how to apply the ADEMP framework in practice using an example simulation study on the evaluation of methods for the analysis of pre-post measurement experiments. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting.\",\"authors\":\"Björn S Siepe, František Bartoš, Tim P Morris, Anne-Laure Boulesteix, Daniel W Heck, Samuel Pawel\",\"doi\":\"10.1037/met0000695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulation studies are widely used for evaluating the performance of statistical methods in psychology. However, the quality of simulation studies can vary widely in terms of their design, execution, and reporting. In order to assess the quality of typical simulation studies in psychology, we reviewed 321 articles published in <i>Psychological Methods, Behavior Research Methods, and Multivariate Behavioral Research</i> in 2021 and 2022, among which 100/321 = 31.2% report a simulation study. We find that many articles do not provide complete and transparent information about key aspects of the study, such as justifications for the number of simulation repetitions, Monte Carlo uncertainty estimates, or code and data to reproduce the simulation studies. To address this problem, we provide a summary of the ADEMP (aims, data-generating mechanism, estimands and other targets, methods, performance measures) design and reporting framework from Morris et al. (2019) adapted to simulation studies in psychology. Based on this framework, we provide ADEMP-PreReg, a step-by-step template for researchers to use when designing, potentially preregistering, and reporting their simulation studies. We give formulae for estimating common performance measures, their Monte Carlo standard errors, and for calculating the number of simulation repetitions to achieve a desired Monte Carlo standard error. Finally, we give a detailed tutorial on how to apply the ADEMP framework in practice using an example simulation study on the evaluation of methods for the analysis of pre-post measurement experiments. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000695\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000695","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
模拟研究被广泛用于评估心理学统计方法的性能。然而,模拟研究在设计、执行和报告方面的质量可能存在很大差异。为了评估心理学中典型模拟研究的质量,我们查阅了 2021 年和 2022 年发表在《心理学方法》、《行为研究方法》和《多元行为研究》上的 321 篇文章,其中 100/321 = 31.2% 的文章报告了模拟研究。我们发现,许多文章没有提供完整、透明的研究关键方面的信息,如模拟重复次数的理由、蒙特卡罗不确定性估计或重现模拟研究的代码和数据。为了解决这个问题,我们总结了 Morris 等人(2019 年)的 ADEMP(目的、数据生成机制、估计值和其他目标、方法、绩效衡量)设计和报告框架,并将其调整为心理学中的模拟研究。在此框架基础上,我们提供了 ADEMP-PreReg,一个供研究人员在设计、预注册和报告模拟研究时使用的分步模板。我们给出了估算常见性能指标、其蒙特卡洛标准误差以及计算达到所需的蒙特卡洛标准误差所需的模拟重复次数的公式。最后,我们通过一个关于事后测量实验分析方法评估的模拟研究实例,详细介绍了如何在实践中应用 ADEMP 框架。(PsycInfo Database Record (c) 2024 APA, all rights reserved)。
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting.
Simulation studies are widely used for evaluating the performance of statistical methods in psychology. However, the quality of simulation studies can vary widely in terms of their design, execution, and reporting. In order to assess the quality of typical simulation studies in psychology, we reviewed 321 articles published in Psychological Methods, Behavior Research Methods, and Multivariate Behavioral Research in 2021 and 2022, among which 100/321 = 31.2% report a simulation study. We find that many articles do not provide complete and transparent information about key aspects of the study, such as justifications for the number of simulation repetitions, Monte Carlo uncertainty estimates, or code and data to reproduce the simulation studies. To address this problem, we provide a summary of the ADEMP (aims, data-generating mechanism, estimands and other targets, methods, performance measures) design and reporting framework from Morris et al. (2019) adapted to simulation studies in psychology. Based on this framework, we provide ADEMP-PreReg, a step-by-step template for researchers to use when designing, potentially preregistering, and reporting their simulation studies. We give formulae for estimating common performance measures, their Monte Carlo standard errors, and for calculating the number of simulation repetitions to achieve a desired Monte Carlo standard error. Finally, we give a detailed tutorial on how to apply the ADEMP framework in practice using an example simulation study on the evaluation of methods for the analysis of pre-post measurement experiments. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.