利用智能手机图像和视觉人工智能绘制人行道无障碍地图:一种参与式方法。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Diego Morra, Xiaosheng Zhu, Chang Liu, Kyle Fu, Fábio Duarte, Simone Mora, Zhengbing He, Carlo Ratti
{"title":"利用智能手机图像和视觉人工智能绘制人行道无障碍地图:一种参与式方法。","authors":"Diego Morra, Xiaosheng Zhu, Chang Liu, Kyle Fu, Fábio Duarte, Simone Mora, Zhengbing He, Carlo Ratti","doi":"10.1098/rsta.2024.0106","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating sidewalk accessibility is conventionally a manual and time-consuming task that requires specialized personnel. While recent developments in Visual AI have paved the way for automating data analysis, the lack of sidewalk accessibility datasets remains a significant challenge. This study presents the design and validation of Sidewalk AI Scanner, a web app that enables quick, crowdsourced and low-cost sidewalk mapping. The app enables a participatory approach to data collection through imagery captured using smartphone cameras. Subsequently, dedicated algorithms automatically identify sidewalk features such as width, obstacles or pavement conditions. Though not a replacement for high-resolution sensing methods, this method leverages data crowdsourcing as a strategy to produce a highly scalable, city-level dataset of sidewalk accessibility, offering a novel perspective on the city's inclusivity; fostering community empowerment and participatory planning.This article is part of the theme issue 'Co-creating the future: participatory cities and digital governance'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2285","pages":"20240106"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping sidewalk accessibility with smartphone imagery and Visual AI: a participatory approach.\",\"authors\":\"Diego Morra, Xiaosheng Zhu, Chang Liu, Kyle Fu, Fábio Duarte, Simone Mora, Zhengbing He, Carlo Ratti\",\"doi\":\"10.1098/rsta.2024.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluating sidewalk accessibility is conventionally a manual and time-consuming task that requires specialized personnel. While recent developments in Visual AI have paved the way for automating data analysis, the lack of sidewalk accessibility datasets remains a significant challenge. This study presents the design and validation of Sidewalk AI Scanner, a web app that enables quick, crowdsourced and low-cost sidewalk mapping. The app enables a participatory approach to data collection through imagery captured using smartphone cameras. Subsequently, dedicated algorithms automatically identify sidewalk features such as width, obstacles or pavement conditions. Though not a replacement for high-resolution sensing methods, this method leverages data crowdsourcing as a strategy to produce a highly scalable, city-level dataset of sidewalk accessibility, offering a novel perspective on the city's inclusivity; fostering community empowerment and participatory planning.This article is part of the theme issue 'Co-creating the future: participatory cities and digital governance'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2285\",\"pages\":\"20240106\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0106\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0106","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

评估人行道的无障碍程度通常是一项需要专业人员手工操作的耗时任务。虽然视觉人工智能的最新发展为数据分析自动化铺平了道路,但人行道无障碍数据集的缺乏仍是一项重大挑战。本研究介绍了人行道人工智能扫描仪的设计和验证,这是一款可实现快速、众包和低成本人行道测绘的网络应用程序。该应用程序通过使用智能手机摄像头捕捉图像,以参与式方法收集数据。随后,专用算法会自动识别人行道的特征,如宽度、障碍物或路面状况。虽然不能取代高分辨率的传感方法,但这种方法利用数据众包作为一种策略,生成了一个高度可扩展的城市级人行道可达性数据集,为城市的包容性提供了一个新的视角;促进了社区赋权和参与式规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping sidewalk accessibility with smartphone imagery and Visual AI: a participatory approach.

Evaluating sidewalk accessibility is conventionally a manual and time-consuming task that requires specialized personnel. While recent developments in Visual AI have paved the way for automating data analysis, the lack of sidewalk accessibility datasets remains a significant challenge. This study presents the design and validation of Sidewalk AI Scanner, a web app that enables quick, crowdsourced and low-cost sidewalk mapping. The app enables a participatory approach to data collection through imagery captured using smartphone cameras. Subsequently, dedicated algorithms automatically identify sidewalk features such as width, obstacles or pavement conditions. Though not a replacement for high-resolution sensing methods, this method leverages data crowdsourcing as a strategy to produce a highly scalable, city-level dataset of sidewalk accessibility, offering a novel perspective on the city's inclusivity; fostering community empowerment and participatory planning.This article is part of the theme issue 'Co-creating the future: participatory cities and digital governance'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信