通过持久图像可视化放射数据偏差。

Q2 Medicine
Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson
{"title":"通过持久图像可视化放射数据偏差。","authors":"Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson","doi":"10.18632/oncotarget.28670","DOIUrl":null,"url":null,"abstract":"<p><p>Persistence images, derived from topological data analysis, emerge as a powerful tool for visualizing and mitigating biases in radiological data interpretation and AI model development. This technique transforms complex topological features into stable, interpretable representations, offering unique insights into medical imaging data structure. By providing intuitive visualizations, persistence images enable the identification of subtle structural differences and potential biases in data acquisition, interpretation, and AI model training. Persistence images can also facilitate stratified sampling, matching statistics, and noise filtration, enhancing the accuracy and equity of radiological analysis. Despite challenges in computational complexity and workflow integration, persistence images show promise in developing more accurate, equitable, and trustworthy AI systems in radiology, potentially improving patient outcomes and personalized healthcare delivery.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"787-789"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559657/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visualizing radiological data bias through persistence images.\",\"authors\":\"Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson\",\"doi\":\"10.18632/oncotarget.28670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persistence images, derived from topological data analysis, emerge as a powerful tool for visualizing and mitigating biases in radiological data interpretation and AI model development. This technique transforms complex topological features into stable, interpretable representations, offering unique insights into medical imaging data structure. By providing intuitive visualizations, persistence images enable the identification of subtle structural differences and potential biases in data acquisition, interpretation, and AI model training. Persistence images can also facilitate stratified sampling, matching statistics, and noise filtration, enhancing the accuracy and equity of radiological analysis. Despite challenges in computational complexity and workflow integration, persistence images show promise in developing more accurate, equitable, and trustworthy AI systems in radiology, potentially improving patient outcomes and personalized healthcare delivery.</p>\",\"PeriodicalId\":19499,\"journal\":{\"name\":\"Oncotarget\",\"volume\":\"15 \",\"pages\":\"787-789\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncotarget\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncotarget.28670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

从拓扑数据分析中得出的持久图像是一种强大的工具,可用于可视化和减少放射学数据解读和人工智能模型开发中的偏差。这项技术将复杂的拓扑特征转化为稳定、可解释的表征,为医学影像数据结构提供了独特的见解。通过提供直观的可视化效果,持久图像能够识别数据采集、解读和人工智能模型训练中的细微结构差异和潜在偏差。持久图像还能促进分层抽样、匹配统计和噪声过滤,提高放射学分析的准确性和公平性。尽管在计算复杂性和工作流程整合方面存在挑战,但持久图像显示了在放射学领域开发更准确、公平和可信的人工智能系统的前景,有可能改善患者的治疗效果和个性化医疗服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing radiological data bias through persistence images.

Persistence images, derived from topological data analysis, emerge as a powerful tool for visualizing and mitigating biases in radiological data interpretation and AI model development. This technique transforms complex topological features into stable, interpretable representations, offering unique insights into medical imaging data structure. By providing intuitive visualizations, persistence images enable the identification of subtle structural differences and potential biases in data acquisition, interpretation, and AI model training. Persistence images can also facilitate stratified sampling, matching statistics, and noise filtration, enhancing the accuracy and equity of radiological analysis. Despite challenges in computational complexity and workflow integration, persistence images show promise in developing more accurate, equitable, and trustworthy AI systems in radiology, potentially improving patient outcomes and personalized healthcare delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信