持久性景观:为无偏见的放射学解释指明方向。

Q2 Medicine
Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson
{"title":"持久性景观:为无偏见的放射学解释指明方向。","authors":"Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson","doi":"10.18632/oncotarget.28671","DOIUrl":null,"url":null,"abstract":"<p><p>Persistence landscapes, a sophisticated tool from topological data analysis, offer a promising approach to address biases in radiological interpretation and AI model development. By transforming complex topological features into statistically analyzable functions, they enable robust comparisons between populations and datasets. Persistence landscapes excel in noise filtration, fusion bias mitigation, and enhancing machine learning models. Despite challenges in computation and integration, they show potential to improve the accuracy and equity of radiological analysis, particularly in multi-modal imaging and AI-assisted interpretation.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"790-792"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559655/pdf/","citationCount":"0","resultStr":"{\"title\":\"Persistence landscapes: Charting a path to unbiased radiological interpretation.\",\"authors\":\"Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson\",\"doi\":\"10.18632/oncotarget.28671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persistence landscapes, a sophisticated tool from topological data analysis, offer a promising approach to address biases in radiological interpretation and AI model development. By transforming complex topological features into statistically analyzable functions, they enable robust comparisons between populations and datasets. Persistence landscapes excel in noise filtration, fusion bias mitigation, and enhancing machine learning models. Despite challenges in computation and integration, they show potential to improve the accuracy and equity of radiological analysis, particularly in multi-modal imaging and AI-assisted interpretation.</p>\",\"PeriodicalId\":19499,\"journal\":{\"name\":\"Oncotarget\",\"volume\":\"15 \",\"pages\":\"790-792\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559655/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncotarget\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncotarget.28671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

持久性景观是拓扑数据分析的一种复杂工具,它为解决放射学解释和人工智能模型开发中的偏差提供了一种很有前景的方法。通过将复杂的拓扑特征转化为可统计分析的函数,它们能够在人群和数据集之间进行稳健的比较。持久性景观在噪声过滤、减轻融合偏差和增强机器学习模型方面表现出色。尽管在计算和集成方面存在挑战,但它们在提高放射学分析的准确性和公平性方面显示出潜力,尤其是在多模态成像和人工智能辅助解读方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistence landscapes: Charting a path to unbiased radiological interpretation.

Persistence landscapes, a sophisticated tool from topological data analysis, offer a promising approach to address biases in radiological interpretation and AI model development. By transforming complex topological features into statistically analyzable functions, they enable robust comparisons between populations and datasets. Persistence landscapes excel in noise filtration, fusion bias mitigation, and enhancing machine learning models. Despite challenges in computation and integration, they show potential to improve the accuracy and equity of radiological analysis, particularly in multi-modal imaging and AI-assisted interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信