{"title":"雄性大鼠青春期接触吗啡后成年期的小胶质细胞依赖性周围神经痛","authors":"Kawsar Alami , Yaghoub Fathollahi , Shiva Hashemizadeh , Masoumeh Mosleh , Saeed Semnanian , Sayed Yousof Mousavi , Hossein Azizi","doi":"10.1016/j.neuropharm.2024.110211","DOIUrl":null,"url":null,"abstract":"<div><div>Persistent effects of adolescent morphine exposure on neurobiological processes and behaviors in adulthood have been partially identified. Hypersensitivity following adolescent exposure to morphine is a complex and multifaceted phenomenon whose underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of microglia in neuropathic pain sensitivity following adolescent morphine exposure, focused on hippocampal genes expression and plasticity. To achieve this, adolescent male Wistar rats received morphine, along with minocycline, to inhibit microglial activity. The allodynia and hyperalgesia of adult rats were evaluated using von-Frey filaments and the Hargreaves plantar test in both baseline and neuropathic pain conditions. Hippocampal genes expression was analyzed following the behavioral tests. The plasticity of the Schaffer-CA1 hippocampal synapses was also assessed using field potential recording following neuropathy. Results showed that adolescent morphine exposure exacerbated the allodynia and hyperalgesia in both baseline and neuropathic pain states in adult rats, which was significantly reduced by the co-administration of minocycline during adolescence. Neuropathy in adult rats was found to increase hippocampal expression of inflammatory mediators, but adolescent morphine prevented this effect. Additionally, we observed a reduction in the baseline synaptic transmission and long-term potentiation (LTP) at the Schaffer-CA1 hippocampal synapses after neuropathy in adult rats following adolescent exposure to morphine. The reduction of synaptic activity was not altered by the co-administration of minocycline with morphine during adolescence. It is concluded that microglia play an important role in mediating hypersensitivity induced by adolescent morphine exposure, although hippocampal microglia may not be directly involved in this process.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"263 ","pages":"Article 110211"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microglia-dependent peripheral neuropathic pain in adulthood following adolescent exposure to morphine in male rats\",\"authors\":\"Kawsar Alami , Yaghoub Fathollahi , Shiva Hashemizadeh , Masoumeh Mosleh , Saeed Semnanian , Sayed Yousof Mousavi , Hossein Azizi\",\"doi\":\"10.1016/j.neuropharm.2024.110211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Persistent effects of adolescent morphine exposure on neurobiological processes and behaviors in adulthood have been partially identified. Hypersensitivity following adolescent exposure to morphine is a complex and multifaceted phenomenon whose underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of microglia in neuropathic pain sensitivity following adolescent morphine exposure, focused on hippocampal genes expression and plasticity. To achieve this, adolescent male Wistar rats received morphine, along with minocycline, to inhibit microglial activity. The allodynia and hyperalgesia of adult rats were evaluated using von-Frey filaments and the Hargreaves plantar test in both baseline and neuropathic pain conditions. Hippocampal genes expression was analyzed following the behavioral tests. The plasticity of the Schaffer-CA1 hippocampal synapses was also assessed using field potential recording following neuropathy. Results showed that adolescent morphine exposure exacerbated the allodynia and hyperalgesia in both baseline and neuropathic pain states in adult rats, which was significantly reduced by the co-administration of minocycline during adolescence. Neuropathy in adult rats was found to increase hippocampal expression of inflammatory mediators, but adolescent morphine prevented this effect. Additionally, we observed a reduction in the baseline synaptic transmission and long-term potentiation (LTP) at the Schaffer-CA1 hippocampal synapses after neuropathy in adult rats following adolescent exposure to morphine. The reduction of synaptic activity was not altered by the co-administration of minocycline with morphine during adolescence. It is concluded that microglia play an important role in mediating hypersensitivity induced by adolescent morphine exposure, although hippocampal microglia may not be directly involved in this process.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"263 \",\"pages\":\"Article 110211\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390824003800\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824003800","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Microglia-dependent peripheral neuropathic pain in adulthood following adolescent exposure to morphine in male rats
Persistent effects of adolescent morphine exposure on neurobiological processes and behaviors in adulthood have been partially identified. Hypersensitivity following adolescent exposure to morphine is a complex and multifaceted phenomenon whose underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of microglia in neuropathic pain sensitivity following adolescent morphine exposure, focused on hippocampal genes expression and plasticity. To achieve this, adolescent male Wistar rats received morphine, along with minocycline, to inhibit microglial activity. The allodynia and hyperalgesia of adult rats were evaluated using von-Frey filaments and the Hargreaves plantar test in both baseline and neuropathic pain conditions. Hippocampal genes expression was analyzed following the behavioral tests. The plasticity of the Schaffer-CA1 hippocampal synapses was also assessed using field potential recording following neuropathy. Results showed that adolescent morphine exposure exacerbated the allodynia and hyperalgesia in both baseline and neuropathic pain states in adult rats, which was significantly reduced by the co-administration of minocycline during adolescence. Neuropathy in adult rats was found to increase hippocampal expression of inflammatory mediators, but adolescent morphine prevented this effect. Additionally, we observed a reduction in the baseline synaptic transmission and long-term potentiation (LTP) at the Schaffer-CA1 hippocampal synapses after neuropathy in adult rats following adolescent exposure to morphine. The reduction of synaptic activity was not altered by the co-administration of minocycline with morphine during adolescence. It is concluded that microglia play an important role in mediating hypersensitivity induced by adolescent morphine exposure, although hippocampal microglia may not be directly involved in this process.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).