Stephanie V Trefry, Mayanka Awasthi, Christy N Raney, Amy L Cregger, Chase A Gonzales, Brittney L Layton, Robert N Enamorado, Nelson A Martinez, Deborah S Gohegan, Masoudeh Masoud-Bahnamiri, Jennifer Y Cho, Dawn M Myscofski, Tinoush Moulaei, Natasza E Ziółkowska, Scott J Goebel, Seth Lederman, Sina Bavari, Farooq Nasar
{"title":"重组嵌合型马痘病毒(TNX-801)在体外和体内模型中都比疫苗病毒株减毒。","authors":"Stephanie V Trefry, Mayanka Awasthi, Christy N Raney, Amy L Cregger, Chase A Gonzales, Brittney L Layton, Robert N Enamorado, Nelson A Martinez, Deborah S Gohegan, Masoudeh Masoud-Bahnamiri, Jennifer Y Cho, Dawn M Myscofski, Tinoush Moulaei, Natasza E Ziółkowska, Scott J Goebel, Seth Lederman, Sina Bavari, Farooq Nasar","doi":"10.1128/msphere.00265-24","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant chimeric horsepox virus (TNX-801) is a preclinical vaccine in development against mpox and smallpox. In this report, we investigated the potential phenotypic differences in <i>in vitro</i> and <i>in vivo</i> models between TNX-801 and older vaccinia virus (VACV)-based vaccine strains (VACV-Lis and VACV-NYCBH) used in the eradication of smallpox as well as VACV-WR, VACV-IHD, and MVA. TNX-801 displayed a small plaque phenotype (~1-2 mm) in BSC-40 and Vero-E6 cells. Multi-step replication kinetics in immortalized nonhuman primate cell lines, and human primary cells from dermal and respiratory tracts yielded >10- to 100-fold lower infectious titers than the VACV strains. In addition, the infectious particle-to-genome copy ratio data suggests that TNX-801 genome packaging is ~10- to 100-fold less efficient than the VACV strains and the potential mechanism of TNX-801 attenuation is at the packaging/egress stage. Lastly, the susceptibility to VACV and TNX-801 infection of three new immunocompromised murine models (C56BL/6 <i>Ifnar</i><sup>-/-</sup>, C56BL/6 <i>Ifngr</i><sup>-/-</sup>, and C56BL/6 <i>Ifnar</i><sup>-/-</sup>/<i>Ifngr</i><sup>-/-</sup>) was investigated. VACV strains were able to produce severe disease including decrease in body weight and temperature, as well as lethality in murine models via the intraperitoneal or intranasal routes. In contrast to VACV strains, TNX-801 was unable to produce any disease in murine models. These data demonstrate that TNX-801 is >10- to 1,000-fold more attenuated compared to older VACV-based smallpox vaccine strains in human primary cell lines and immunocompromised mice.</p><p><strong>Importance: </strong>Variola and monkeypox viruses are medically important pathogens that can cause fatal human disease. The two FDA-approved vaccines, ACAM-2000 and JYNNEOS, have important advantages and disadvantages. ACAM-2000 offers durable immunity; however, it has high adverse event rates. In contrast, JYNNEOS has a safer profile but requires two doses 4-weeks apart to achieve comparable immunity. Consequently, there is a need for vaccines offering durable immunity via single immunization with minimal adverse events. TNX-801 is a preclinical stage vaccine that can stimulate potent immunity via a single dose and provides protection against lethal mpox disease in the nonhuman primate model. Here, we show that TNX-801 is >10- to 1,000-fold attenuated in <i>in vitro</i> and <i>in vivo</i> models including human primary cells and immunocompromised murine models than vaccine strains utilized in smallpox eradication. The natural attenuation of TNX-801 and its ability to induce protective immunity via a single vaccination are promising and warrants further development.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0026524"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant chimeric horsepox virus (TNX-801) is attenuated relative to vaccinia virus strains in both <i>in vitro</i> and <i>in vivo</i> models.\",\"authors\":\"Stephanie V Trefry, Mayanka Awasthi, Christy N Raney, Amy L Cregger, Chase A Gonzales, Brittney L Layton, Robert N Enamorado, Nelson A Martinez, Deborah S Gohegan, Masoudeh Masoud-Bahnamiri, Jennifer Y Cho, Dawn M Myscofski, Tinoush Moulaei, Natasza E Ziółkowska, Scott J Goebel, Seth Lederman, Sina Bavari, Farooq Nasar\",\"doi\":\"10.1128/msphere.00265-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant chimeric horsepox virus (TNX-801) is a preclinical vaccine in development against mpox and smallpox. In this report, we investigated the potential phenotypic differences in <i>in vitro</i> and <i>in vivo</i> models between TNX-801 and older vaccinia virus (VACV)-based vaccine strains (VACV-Lis and VACV-NYCBH) used in the eradication of smallpox as well as VACV-WR, VACV-IHD, and MVA. TNX-801 displayed a small plaque phenotype (~1-2 mm) in BSC-40 and Vero-E6 cells. Multi-step replication kinetics in immortalized nonhuman primate cell lines, and human primary cells from dermal and respiratory tracts yielded >10- to 100-fold lower infectious titers than the VACV strains. In addition, the infectious particle-to-genome copy ratio data suggests that TNX-801 genome packaging is ~10- to 100-fold less efficient than the VACV strains and the potential mechanism of TNX-801 attenuation is at the packaging/egress stage. Lastly, the susceptibility to VACV and TNX-801 infection of three new immunocompromised murine models (C56BL/6 <i>Ifnar</i><sup>-/-</sup>, C56BL/6 <i>Ifngr</i><sup>-/-</sup>, and C56BL/6 <i>Ifnar</i><sup>-/-</sup>/<i>Ifngr</i><sup>-/-</sup>) was investigated. VACV strains were able to produce severe disease including decrease in body weight and temperature, as well as lethality in murine models via the intraperitoneal or intranasal routes. In contrast to VACV strains, TNX-801 was unable to produce any disease in murine models. These data demonstrate that TNX-801 is >10- to 1,000-fold more attenuated compared to older VACV-based smallpox vaccine strains in human primary cell lines and immunocompromised mice.</p><p><strong>Importance: </strong>Variola and monkeypox viruses are medically important pathogens that can cause fatal human disease. The two FDA-approved vaccines, ACAM-2000 and JYNNEOS, have important advantages and disadvantages. ACAM-2000 offers durable immunity; however, it has high adverse event rates. In contrast, JYNNEOS has a safer profile but requires two doses 4-weeks apart to achieve comparable immunity. Consequently, there is a need for vaccines offering durable immunity via single immunization with minimal adverse events. TNX-801 is a preclinical stage vaccine that can stimulate potent immunity via a single dose and provides protection against lethal mpox disease in the nonhuman primate model. Here, we show that TNX-801 is >10- to 1,000-fold attenuated in <i>in vitro</i> and <i>in vivo</i> models including human primary cells and immunocompromised murine models than vaccine strains utilized in smallpox eradication. The natural attenuation of TNX-801 and its ability to induce protective immunity via a single vaccination are promising and warrants further development.</p>\",\"PeriodicalId\":19052,\"journal\":{\"name\":\"mSphere\",\"volume\":\" \",\"pages\":\"e0026524\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msphere.00265-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00265-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Recombinant chimeric horsepox virus (TNX-801) is attenuated relative to vaccinia virus strains in both in vitro and in vivo models.
Recombinant chimeric horsepox virus (TNX-801) is a preclinical vaccine in development against mpox and smallpox. In this report, we investigated the potential phenotypic differences in in vitro and in vivo models between TNX-801 and older vaccinia virus (VACV)-based vaccine strains (VACV-Lis and VACV-NYCBH) used in the eradication of smallpox as well as VACV-WR, VACV-IHD, and MVA. TNX-801 displayed a small plaque phenotype (~1-2 mm) in BSC-40 and Vero-E6 cells. Multi-step replication kinetics in immortalized nonhuman primate cell lines, and human primary cells from dermal and respiratory tracts yielded >10- to 100-fold lower infectious titers than the VACV strains. In addition, the infectious particle-to-genome copy ratio data suggests that TNX-801 genome packaging is ~10- to 100-fold less efficient than the VACV strains and the potential mechanism of TNX-801 attenuation is at the packaging/egress stage. Lastly, the susceptibility to VACV and TNX-801 infection of three new immunocompromised murine models (C56BL/6 Ifnar-/-, C56BL/6 Ifngr-/-, and C56BL/6 Ifnar-/-/Ifngr-/-) was investigated. VACV strains were able to produce severe disease including decrease in body weight and temperature, as well as lethality in murine models via the intraperitoneal or intranasal routes. In contrast to VACV strains, TNX-801 was unable to produce any disease in murine models. These data demonstrate that TNX-801 is >10- to 1,000-fold more attenuated compared to older VACV-based smallpox vaccine strains in human primary cell lines and immunocompromised mice.
Importance: Variola and monkeypox viruses are medically important pathogens that can cause fatal human disease. The two FDA-approved vaccines, ACAM-2000 and JYNNEOS, have important advantages and disadvantages. ACAM-2000 offers durable immunity; however, it has high adverse event rates. In contrast, JYNNEOS has a safer profile but requires two doses 4-weeks apart to achieve comparable immunity. Consequently, there is a need for vaccines offering durable immunity via single immunization with minimal adverse events. TNX-801 is a preclinical stage vaccine that can stimulate potent immunity via a single dose and provides protection against lethal mpox disease in the nonhuman primate model. Here, we show that TNX-801 is >10- to 1,000-fold attenuated in in vitro and in vivo models including human primary cells and immunocompromised murine models than vaccine strains utilized in smallpox eradication. The natural attenuation of TNX-801 and its ability to induce protective immunity via a single vaccination are promising and warrants further development.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.