Sebastian L D'Addario, Eleonora Rosina, Mariangela Massaro Cenere, Claudia Bagni, Nicola B Mercuri, Ada Ledonne
{"title":"ErbB 抑制能挽救脆性 X 综合征小鼠模型中黑质多巴胺神经元的过度活跃和重复行为。","authors":"Sebastian L D'Addario, Eleonora Rosina, Mariangela Massaro Cenere, Claudia Bagni, Nicola B Mercuri, Ada Ledonne","doi":"10.1038/s41380-024-02831-y","DOIUrl":null,"url":null,"abstract":"<p><p>Repetitive stereotyped behaviors are core symptoms of autism spectrum disorders (ASD) and fragile X syndrome (FXS), the prevalent genetic cause of intellectual disability and autism. The nigrostriatal dopamine (DA) circuit rules movement and creation of habits and sequential behaviors; therefore, its dysregulation could promote autistic repetitive behaviors. Nevertheless, inspection of substantia nigra pars compacta (SNpc) DA neurons in ASD models has been overlooked and specific evidence of their altered activity in ASD and FXS is absent. Here, we show that hyperactivity of SNpc DA neurons is an early feature of FXS. The underlying mechanism relies on an interplay between metabotropic glutamate receptor 1 (mGluR1) and ErbB tyrosine kinases, receptors for the neurotrophic and differentiation factors known as neuregulins. Up-regulation of ErbB4 and ErbB2 in nigral DA neurons drives neuronal hyperactivity and repetitive behaviors of the FXS mouse, concurrently rescued by ErbB inhibition. In conclusion, beyond providing the first evidence that nigral DA neuron hyperactivity is a signature of FXS and nigral mGluR1 and ErbB4/2 play a relevant role in FXS etiology, we demonstrate that inhibiting ErbB is a valuable pharmacological approach to attenuate stereotyped repetitive behaviors, thus opening an avenue toward innovative therapies for ASD and FXS treatment.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ErbB inhibition rescues nigral dopamine neuron hyperactivity and repetitive behaviors in a mouse model of fragile X syndrome.\",\"authors\":\"Sebastian L D'Addario, Eleonora Rosina, Mariangela Massaro Cenere, Claudia Bagni, Nicola B Mercuri, Ada Ledonne\",\"doi\":\"10.1038/s41380-024-02831-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Repetitive stereotyped behaviors are core symptoms of autism spectrum disorders (ASD) and fragile X syndrome (FXS), the prevalent genetic cause of intellectual disability and autism. The nigrostriatal dopamine (DA) circuit rules movement and creation of habits and sequential behaviors; therefore, its dysregulation could promote autistic repetitive behaviors. Nevertheless, inspection of substantia nigra pars compacta (SNpc) DA neurons in ASD models has been overlooked and specific evidence of their altered activity in ASD and FXS is absent. Here, we show that hyperactivity of SNpc DA neurons is an early feature of FXS. The underlying mechanism relies on an interplay between metabotropic glutamate receptor 1 (mGluR1) and ErbB tyrosine kinases, receptors for the neurotrophic and differentiation factors known as neuregulins. Up-regulation of ErbB4 and ErbB2 in nigral DA neurons drives neuronal hyperactivity and repetitive behaviors of the FXS mouse, concurrently rescued by ErbB inhibition. In conclusion, beyond providing the first evidence that nigral DA neuron hyperactivity is a signature of FXS and nigral mGluR1 and ErbB4/2 play a relevant role in FXS etiology, we demonstrate that inhibiting ErbB is a valuable pharmacological approach to attenuate stereotyped repetitive behaviors, thus opening an avenue toward innovative therapies for ASD and FXS treatment.</p>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-024-02831-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02831-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ErbB inhibition rescues nigral dopamine neuron hyperactivity and repetitive behaviors in a mouse model of fragile X syndrome.
Repetitive stereotyped behaviors are core symptoms of autism spectrum disorders (ASD) and fragile X syndrome (FXS), the prevalent genetic cause of intellectual disability and autism. The nigrostriatal dopamine (DA) circuit rules movement and creation of habits and sequential behaviors; therefore, its dysregulation could promote autistic repetitive behaviors. Nevertheless, inspection of substantia nigra pars compacta (SNpc) DA neurons in ASD models has been overlooked and specific evidence of their altered activity in ASD and FXS is absent. Here, we show that hyperactivity of SNpc DA neurons is an early feature of FXS. The underlying mechanism relies on an interplay between metabotropic glutamate receptor 1 (mGluR1) and ErbB tyrosine kinases, receptors for the neurotrophic and differentiation factors known as neuregulins. Up-regulation of ErbB4 and ErbB2 in nigral DA neurons drives neuronal hyperactivity and repetitive behaviors of the FXS mouse, concurrently rescued by ErbB inhibition. In conclusion, beyond providing the first evidence that nigral DA neuron hyperactivity is a signature of FXS and nigral mGluR1 and ErbB4/2 play a relevant role in FXS etiology, we demonstrate that inhibiting ErbB is a valuable pharmacological approach to attenuate stereotyped repetitive behaviors, thus opening an avenue toward innovative therapies for ASD and FXS treatment.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.