无需二进制泵的梯度洗脱纳升液相色谱法:平滑阶梯梯度使单细胞蛋白质组学的分离具有可重复性、灵敏性和低成本性

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kei G I Webber, Siqi Huang, Hsien-Jung L Lin, Tyler L Hunter, Jeremy Tsang, Dasun Jayatunge, Joshua L Andersen, Ryan T Kelly
{"title":"无需二进制泵的梯度洗脱纳升液相色谱法:平滑阶梯梯度使单细胞蛋白质组学的分离具有可重复性、灵敏性和低成本性","authors":"Kei G I Webber, Siqi Huang, Hsien-Jung L Lin, Tyler L Hunter, Jeremy Tsang, Dasun Jayatunge, Joshua L Andersen, Ryan T Kelly","doi":"10.1016/j.mcpro.2024.100880","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry-based proteome profiling of trace analytes including single cells benefits from liquid chromatography separations operated at low flow rates (e.g., <50 nL/min). However, high-pressure binary pumps needed to achieve such flow rates are not commercially available, and instead require splitting of the gradient flow to achieve low-nanoliter-per-minute flow rates. Gradient flow splitting can waste solvent and lead to flow inconsistencies. To address this, we have developed a method for creating gradients by combining plugs of mobile phase of increasing solvent strength together in a column, and then relying on Taylor dispersion to form the desired smooth gradient profile. Additionally, our method dramatically reduces costs, as only a single isocratic high-pressure pump is required. Following development of gradient profiles for both 10- and 20-min active gradients, we measured 200 pg injections of HeLa digest using a timsTOF mass spectrometer. Finally, we investigated differences in protein expression between single cells originating from two different colonies of ATG-knockout HeLa cells. Thousands of proteins were quantified, and a potential mechanism explaining differential immune responses of these two colonies upon exposure to viral DNA treatment was determined.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100880"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient-Elution Nanoflow Liquid Chromatography without a Binary Pump: Smoothed Step Gradients Enable Reproducible, Sensitive, and Low-Cost Separations for Single-Cell Proteomics.\",\"authors\":\"Kei G I Webber, Siqi Huang, Hsien-Jung L Lin, Tyler L Hunter, Jeremy Tsang, Dasun Jayatunge, Joshua L Andersen, Ryan T Kelly\",\"doi\":\"10.1016/j.mcpro.2024.100880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mass spectrometry-based proteome profiling of trace analytes including single cells benefits from liquid chromatography separations operated at low flow rates (e.g., <50 nL/min). However, high-pressure binary pumps needed to achieve such flow rates are not commercially available, and instead require splitting of the gradient flow to achieve low-nanoliter-per-minute flow rates. Gradient flow splitting can waste solvent and lead to flow inconsistencies. To address this, we have developed a method for creating gradients by combining plugs of mobile phase of increasing solvent strength together in a column, and then relying on Taylor dispersion to form the desired smooth gradient profile. Additionally, our method dramatically reduces costs, as only a single isocratic high-pressure pump is required. Following development of gradient profiles for both 10- and 20-min active gradients, we measured 200 pg injections of HeLa digest using a timsTOF mass spectrometer. Finally, we investigated differences in protein expression between single cells originating from two different colonies of ATG-knockout HeLa cells. Thousands of proteins were quantified, and a potential mechanism explaining differential immune responses of these two colonies upon exposure to viral DNA treatment was determined.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100880\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100880\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100880","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

以质谱为基础的痕量分析物(包括单细胞)蛋白质组图谱分析得益于以低流速运行的液相色谱分离技术(例如......)、
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient-Elution Nanoflow Liquid Chromatography without a Binary Pump: Smoothed Step Gradients Enable Reproducible, Sensitive, and Low-Cost Separations for Single-Cell Proteomics.

Mass spectrometry-based proteome profiling of trace analytes including single cells benefits from liquid chromatography separations operated at low flow rates (e.g., <50 nL/min). However, high-pressure binary pumps needed to achieve such flow rates are not commercially available, and instead require splitting of the gradient flow to achieve low-nanoliter-per-minute flow rates. Gradient flow splitting can waste solvent and lead to flow inconsistencies. To address this, we have developed a method for creating gradients by combining plugs of mobile phase of increasing solvent strength together in a column, and then relying on Taylor dispersion to form the desired smooth gradient profile. Additionally, our method dramatically reduces costs, as only a single isocratic high-pressure pump is required. Following development of gradient profiles for both 10- and 20-min active gradients, we measured 200 pg injections of HeLa digest using a timsTOF mass spectrometer. Finally, we investigated differences in protein expression between single cells originating from two different colonies of ATG-knockout HeLa cells. Thousands of proteins were quantified, and a potential mechanism explaining differential immune responses of these two colonies upon exposure to viral DNA treatment was determined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信