{"title":"SIRT7 可稳定β-catenin,并通过上调 FZD7 促进典型 Wnt 激活。","authors":"Yiying Gu , Zhiqiang Wang , Gaoshuang Liang , Jinying Peng , Xiangwen Zhang , Tingzi Yu , Cong Ding , Zhuan Li","doi":"10.1016/j.lfs.2024.123240","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>The dysregulated Wnt/β-Catenin signaling pathway leads to occurrence of various diseases, and abnormal activation of β-Catenin is a major characteristic of human HCC. FZD7 is a positive regulator of the Wnt/β-catenin signaling pathway, and its upregulation is related to increase of β-catenin expression and carcinogenesis in human HCC. However, mechanisms underlying FZD7 upregulation in HCC remain elusive.</div></div><div><h3>Main methods</h3><div>Nuclear cytosol fractionation, immunofluorescence and Top-Flash were used to detect the activation of β-Catenin. Protein half-life and ubiquitination assays were applied to evaluate protein stability. RNA-seq combined with qRT-PCR was used to evaluate differential gene expressions after SIRT7 knockdown. Wound healing and transwell assays were used to measure cancer cell migration.</div></div><div><h3>Key findings</h3><div>SIRT7-mediated FZD7 expression is essential for stability and activation of β-catenin. Knockdown SIRT7 in HCC cells resulted in enhanced binding of β-catenin to the DC, decreased its stability, nuclear localization and activation. Knockdown FZD7 reversed SIRT7 overexpression mediated β-catenin stabilization and impairment of binding of β-catenin to the DC. At molecular level, SIRT7 promotes FZD7 expression via upregulating transcription factor PU.1, knockdown PU.1 abolished SIRT7-mediated upregulation of FZD7. Finally, we confirmed that FZD7 was responsible for SIRT7-mediated β-catenin stabilization and HCC cells migration. By using clinical samples, we observed strong positive correlations between SIRT7 and PU.1, FZD7, p-GSK3β and β-Catenin in human HCC.</div></div><div><h3>Significance</h3><div>Our results thus revealed a previously undisclosed role of SIRT7 in regulating the canonical Wnt/β-catenin signaling pathway, thereby offering additional evidence that SIRT7 holds promise as a novel therapeutic target for human HCC.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"359 ","pages":"Article 123240"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIRT7 stabilizes β-catenin and promotes canonical Wnt activation via upregulating FZD7\",\"authors\":\"Yiying Gu , Zhiqiang Wang , Gaoshuang Liang , Jinying Peng , Xiangwen Zhang , Tingzi Yu , Cong Ding , Zhuan Li\",\"doi\":\"10.1016/j.lfs.2024.123240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><div>The dysregulated Wnt/β-Catenin signaling pathway leads to occurrence of various diseases, and abnormal activation of β-Catenin is a major characteristic of human HCC. FZD7 is a positive regulator of the Wnt/β-catenin signaling pathway, and its upregulation is related to increase of β-catenin expression and carcinogenesis in human HCC. However, mechanisms underlying FZD7 upregulation in HCC remain elusive.</div></div><div><h3>Main methods</h3><div>Nuclear cytosol fractionation, immunofluorescence and Top-Flash were used to detect the activation of β-Catenin. Protein half-life and ubiquitination assays were applied to evaluate protein stability. RNA-seq combined with qRT-PCR was used to evaluate differential gene expressions after SIRT7 knockdown. Wound healing and transwell assays were used to measure cancer cell migration.</div></div><div><h3>Key findings</h3><div>SIRT7-mediated FZD7 expression is essential for stability and activation of β-catenin. Knockdown SIRT7 in HCC cells resulted in enhanced binding of β-catenin to the DC, decreased its stability, nuclear localization and activation. Knockdown FZD7 reversed SIRT7 overexpression mediated β-catenin stabilization and impairment of binding of β-catenin to the DC. At molecular level, SIRT7 promotes FZD7 expression via upregulating transcription factor PU.1, knockdown PU.1 abolished SIRT7-mediated upregulation of FZD7. Finally, we confirmed that FZD7 was responsible for SIRT7-mediated β-catenin stabilization and HCC cells migration. By using clinical samples, we observed strong positive correlations between SIRT7 and PU.1, FZD7, p-GSK3β and β-Catenin in human HCC.</div></div><div><h3>Significance</h3><div>Our results thus revealed a previously undisclosed role of SIRT7 in regulating the canonical Wnt/β-catenin signaling pathway, thereby offering additional evidence that SIRT7 holds promise as a novel therapeutic target for human HCC.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"359 \",\"pages\":\"Article 123240\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320524008300\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524008300","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
SIRT7 stabilizes β-catenin and promotes canonical Wnt activation via upregulating FZD7
Aims
The dysregulated Wnt/β-Catenin signaling pathway leads to occurrence of various diseases, and abnormal activation of β-Catenin is a major characteristic of human HCC. FZD7 is a positive regulator of the Wnt/β-catenin signaling pathway, and its upregulation is related to increase of β-catenin expression and carcinogenesis in human HCC. However, mechanisms underlying FZD7 upregulation in HCC remain elusive.
Main methods
Nuclear cytosol fractionation, immunofluorescence and Top-Flash were used to detect the activation of β-Catenin. Protein half-life and ubiquitination assays were applied to evaluate protein stability. RNA-seq combined with qRT-PCR was used to evaluate differential gene expressions after SIRT7 knockdown. Wound healing and transwell assays were used to measure cancer cell migration.
Key findings
SIRT7-mediated FZD7 expression is essential for stability and activation of β-catenin. Knockdown SIRT7 in HCC cells resulted in enhanced binding of β-catenin to the DC, decreased its stability, nuclear localization and activation. Knockdown FZD7 reversed SIRT7 overexpression mediated β-catenin stabilization and impairment of binding of β-catenin to the DC. At molecular level, SIRT7 promotes FZD7 expression via upregulating transcription factor PU.1, knockdown PU.1 abolished SIRT7-mediated upregulation of FZD7. Finally, we confirmed that FZD7 was responsible for SIRT7-mediated β-catenin stabilization and HCC cells migration. By using clinical samples, we observed strong positive correlations between SIRT7 and PU.1, FZD7, p-GSK3β and β-Catenin in human HCC.
Significance
Our results thus revealed a previously undisclosed role of SIRT7 in regulating the canonical Wnt/β-catenin signaling pathway, thereby offering additional evidence that SIRT7 holds promise as a novel therapeutic target for human HCC.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.