Elisa Davoli, Rita Ferreira, Irene Fonseca, José A Iglesias
{"title":"基于分区的电视/TGV 去噪训练方案。","authors":"Elisa Davoli, Rita Ferreira, Irene Fonseca, José A Iglesias","doi":"10.1007/s10851-024-01213-x","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":"66 6","pages":"1070-1108"},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554743/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dyadic Partition-Based Training Schemes for TV/TGV Denoising.\",\"authors\":\"Elisa Davoli, Rita Ferreira, Irene Fonseca, José A Iglesias\",\"doi\":\"10.1007/s10851-024-01213-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.</p>\",\"PeriodicalId\":16196,\"journal\":{\"name\":\"Journal of Mathematical Imaging and Vision\",\"volume\":\"66 6\",\"pages\":\"1070-1108\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Imaging and Vision\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10851-024-01213-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01213-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dyadic Partition-Based Training Schemes for TV/TGV Denoising.
Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.
期刊介绍:
The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles.
Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications.
The scope of the journal includes:
computational models of vision; imaging algebra and mathematical morphology
mathematical methods in reconstruction, compactification, and coding
filter theory
probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science
inverse optics
wave theory.
Specific application areas of interest include, but are not limited to:
all aspects of image formation and representation
medical, biological, industrial, geophysical, astronomical and military imaging
image analysis and image understanding
parallel and distributed computing
computer vision architecture design.