基于分区的电视/TGV 去噪训练方案。

IF 1.3 4区 数学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Elisa Davoli, Rita Ferreira, Irene Fonseca, José A Iglesias
{"title":"基于分区的电视/TGV 去噪训练方案。","authors":"Elisa Davoli, Rita Ferreira, Irene Fonseca, José A Iglesias","doi":"10.1007/s10851-024-01213-x","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":"66 6","pages":"1070-1108"},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554743/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dyadic Partition-Based Training Schemes for TV/TGV Denoising.\",\"authors\":\"Elisa Davoli, Rita Ferreira, Irene Fonseca, José A Iglesias\",\"doi\":\"10.1007/s10851-024-01213-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.</p>\",\"PeriodicalId\":16196,\"journal\":{\"name\":\"Journal of Mathematical Imaging and Vision\",\"volume\":\"66 6\",\"pages\":\"1070-1108\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Imaging and Vision\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10851-024-01213-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01213-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

总变异(TV)和总广义变异(TGV)正则化方法既能处理不连续图像,又具有广为人知的特性,因此成为图像去噪领域最著名的方法之一。然而,与其他包含保真度项的变分模型一样,它们在很大程度上取决于其调整参数的选择。一种补救方法是通过多层次方法自动选择这些参数,例如通过优化噪声/清洁图像对的性能。在这项工作中,我们考虑了这种方法,其参数与空间有关,在二元网格上是片断常数,网格本身也是最小化的一部分。我们证明了在数据的温和假设下,固定不连续参数的最小化存在,这导致有限最优分区的存在。我们进一步确定,这些假设等同于常用的参数箱约束。在数值方面,我们考虑了一个简单的最优分区细分方案,该方案建立在任何其他标量参数的双层优化方法之上,并在一些具有代表性的测试图像上证明,与恒定优化参数相比,该方案的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dyadic Partition-Based Training Schemes for TV/TGV Denoising.

Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision 工程技术-计算机:人工智能
CiteScore
4.30
自引率
5.00%
发文量
70
审稿时长
3.3 months
期刊介绍: The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles. Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications. The scope of the journal includes: computational models of vision; imaging algebra and mathematical morphology mathematical methods in reconstruction, compactification, and coding filter theory probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science inverse optics wave theory. Specific application areas of interest include, but are not limited to: all aspects of image formation and representation medical, biological, industrial, geophysical, astronomical and military imaging image analysis and image understanding parallel and distributed computing computer vision architecture design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信