大型语言模型的经济性与公平性:医疗保健视角。

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Radha Nagarajan, Midori Kondo, Franz Salas, Emre Sezgin, Yuan Yao, Vanessa Klotzman, Sandip A Godambe, Naqi Khan, Alfonso Limon, Graham Stephenson, Sharief Taraman, Nephi Walton, Louis Ehwerhemuepha, Jay Pandit, Deepti Pandita, Michael Weiss, Charles Golden, Adam Gold, John Henderson, Angela Shippy, Leo Anthony Celi, William R Hogan, Eric K Oermann, Terence Sanger, Steven Martel
{"title":"大型语言模型的经济性与公平性:医疗保健视角。","authors":"Radha Nagarajan, Midori Kondo, Franz Salas, Emre Sezgin, Yuan Yao, Vanessa Klotzman, Sandip A Godambe, Naqi Khan, Alfonso Limon, Graham Stephenson, Sharief Taraman, Nephi Walton, Louis Ehwerhemuepha, Jay Pandit, Deepti Pandita, Michael Weiss, Charles Golden, Adam Gold, John Henderson, Angela Shippy, Leo Anthony Celi, William R Hogan, Eric K Oermann, Terence Sanger, Steven Martel","doi":"10.2196/64226","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) continue to exhibit noteworthy capabilities across a spectrum of areas, including emerging proficiencies across the health care continuum. Successful LLM implementation and adoption depend on digital readiness, modern infrastructure, a trained workforce, privacy, and an ethical regulatory landscape. These factors can vary significantly across health care ecosystems, dictating the choice of a particular LLM implementation pathway. This perspective discusses 3 LLM implementation pathways-training from scratch pathway (TSP), fine-tuned pathway (FTP), and out-of-the-box pathway (OBP)-as potential onboarding points for health systems while facilitating equitable adoption. The choice of a particular pathway is governed by needs as well as affordability. Therefore, the risks, benefits, and economics of these pathways across 4 major cloud service providers (Amazon, Microsoft, Google, and Oracle) are presented. While cost comparisons, such as on-demand and spot pricing across the cloud service providers for the 3 pathways, are presented for completeness, the usefulness of managed services and cloud enterprise tools is elucidated. Managed services can complement the traditional workforce and expertise, while enterprise tools, such as federated learning, can overcome sample size challenges when implementing LLMs using health care data. Of the 3 pathways, TSP is expected to be the most resource-intensive regarding infrastructure and workforce while providing maximum customization, enhanced transparency, and performance. Because TSP trains the LLM using enterprise health care data, it is expected to harness the digital signatures of the population served by the health care system with the potential to impact outcomes. The use of pretrained models in FTP is a limitation. It may impact its performance because the training data used in the pretrained model may have hidden bias and may not necessarily be health care-related. However, FTP provides a balance between customization, cost, and performance. While OBP can be rapidly deployed, it provides minimal customization and transparency without guaranteeing long-term availability. OBP may also present challenges in interfacing seamlessly with downstream applications in health care settings with variations in pricing and use over time. Lack of customization in OBP can significantly limit its ability to impact outcomes. Finally, potential applications of LLMs in health care, including conversational artificial intelligence, chatbots, summarization, and machine translation, are highlighted. While the 3 implementation pathways discussed in this perspective have the potential to facilitate equitable adoption and democratization of LLMs, transitions between them may be necessary as the needs of health systems evolve. Understanding the economics and trade-offs of these onboarding pathways can guide their strategic adoption and demonstrate value while impacting health care outcomes favorably.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"26 ","pages":"e64226"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economics and Equity of Large Language Models: Health Care Perspective.\",\"authors\":\"Radha Nagarajan, Midori Kondo, Franz Salas, Emre Sezgin, Yuan Yao, Vanessa Klotzman, Sandip A Godambe, Naqi Khan, Alfonso Limon, Graham Stephenson, Sharief Taraman, Nephi Walton, Louis Ehwerhemuepha, Jay Pandit, Deepti Pandita, Michael Weiss, Charles Golden, Adam Gold, John Henderson, Angela Shippy, Leo Anthony Celi, William R Hogan, Eric K Oermann, Terence Sanger, Steven Martel\",\"doi\":\"10.2196/64226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) continue to exhibit noteworthy capabilities across a spectrum of areas, including emerging proficiencies across the health care continuum. Successful LLM implementation and adoption depend on digital readiness, modern infrastructure, a trained workforce, privacy, and an ethical regulatory landscape. These factors can vary significantly across health care ecosystems, dictating the choice of a particular LLM implementation pathway. This perspective discusses 3 LLM implementation pathways-training from scratch pathway (TSP), fine-tuned pathway (FTP), and out-of-the-box pathway (OBP)-as potential onboarding points for health systems while facilitating equitable adoption. The choice of a particular pathway is governed by needs as well as affordability. Therefore, the risks, benefits, and economics of these pathways across 4 major cloud service providers (Amazon, Microsoft, Google, and Oracle) are presented. While cost comparisons, such as on-demand and spot pricing across the cloud service providers for the 3 pathways, are presented for completeness, the usefulness of managed services and cloud enterprise tools is elucidated. Managed services can complement the traditional workforce and expertise, while enterprise tools, such as federated learning, can overcome sample size challenges when implementing LLMs using health care data. Of the 3 pathways, TSP is expected to be the most resource-intensive regarding infrastructure and workforce while providing maximum customization, enhanced transparency, and performance. Because TSP trains the LLM using enterprise health care data, it is expected to harness the digital signatures of the population served by the health care system with the potential to impact outcomes. The use of pretrained models in FTP is a limitation. It may impact its performance because the training data used in the pretrained model may have hidden bias and may not necessarily be health care-related. However, FTP provides a balance between customization, cost, and performance. While OBP can be rapidly deployed, it provides minimal customization and transparency without guaranteeing long-term availability. OBP may also present challenges in interfacing seamlessly with downstream applications in health care settings with variations in pricing and use over time. Lack of customization in OBP can significantly limit its ability to impact outcomes. Finally, potential applications of LLMs in health care, including conversational artificial intelligence, chatbots, summarization, and machine translation, are highlighted. While the 3 implementation pathways discussed in this perspective have the potential to facilitate equitable adoption and democratization of LLMs, transitions between them may be necessary as the needs of health systems evolve. Understanding the economics and trade-offs of these onboarding pathways can guide their strategic adoption and demonstrate value while impacting health care outcomes favorably.</p>\",\"PeriodicalId\":16337,\"journal\":{\"name\":\"Journal of Medical Internet Research\",\"volume\":\"26 \",\"pages\":\"e64226\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Internet Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/64226\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64226","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLMs)继续在各个领域展现出值得关注的能力,包括在整个医疗保健领域的新兴能力。LLM 的成功实施和采用取决于数字化准备、现代化基础设施、训练有素的员工队伍、隐私保护和道德监管环境。这些因素在不同的医疗生态系统中可能会有很大差异,从而决定了选择特定的 LLM 实施途径。本视角讨论了三种 LLM 实施途径--从零开始培训途径 (TSP)、微调途径 (FTP) 和开箱即用途径 (OBP)--作为医疗系统的潜在入门点,同时促进公平采用。特定途径的选择取决于需求和经济承受能力。因此,本文介绍了 4 家主要云服务提供商(亚马逊、微软、谷歌和甲骨文)采用这些途径的风险、收益和经济性。为了完整起见,本文对3种途径的成本进行了比较,如云服务提供商的按需定价和现货定价,同时阐明了托管服务和云企业工具的实用性。管理服务可以补充传统的劳动力和专业知识,而企业工具(如联合学习)则可以在使用医疗数据实施 LLM 时克服样本量方面的挑战。在这 3 种途径中,预计 TSP 在基础设施和劳动力方面的资源密集度最高,同时能提供最大程度的定制、更高的透明度和性能。由于 TSP 使用企业医疗保健数据训练 LLM,因此有望利用医疗保健系统所服务人群的数字签名,从而对结果产生潜在影响。在 FTP 中使用预训练模型是一个局限。这可能会影响其性能,因为预训练模型中使用的训练数据可能存在隐藏偏差,而且不一定与医疗保健相关。不过,FTP 在定制、成本和性能之间取得了平衡。虽然 OBP 可以快速部署,但它提供的定制化和透明度极低,无法保证长期可用性。在定价和使用随时间变化的医疗环境中,OBP 在与下游应用程序无缝对接方面也可能面临挑战。OBP 缺乏定制化,会极大地限制其影响结果的能力。最后,本文强调了 LLM 在医疗保健领域的潜在应用,包括对话式人工智能、聊天机器人、摘要和机器翻译。虽然本视角中讨论的 3 种实施途径有可能促进公平采用 LLMs 并使其民主化,但随着医疗系统需求的不断变化,它们之间的过渡可能是必要的。了解这些入职途径的经济性和利弊权衡,可以为其战略采用提供指导,并在对医疗保健结果产生有利影响的同时展示其价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Economics and Equity of Large Language Models: Health Care Perspective.

Large language models (LLMs) continue to exhibit noteworthy capabilities across a spectrum of areas, including emerging proficiencies across the health care continuum. Successful LLM implementation and adoption depend on digital readiness, modern infrastructure, a trained workforce, privacy, and an ethical regulatory landscape. These factors can vary significantly across health care ecosystems, dictating the choice of a particular LLM implementation pathway. This perspective discusses 3 LLM implementation pathways-training from scratch pathway (TSP), fine-tuned pathway (FTP), and out-of-the-box pathway (OBP)-as potential onboarding points for health systems while facilitating equitable adoption. The choice of a particular pathway is governed by needs as well as affordability. Therefore, the risks, benefits, and economics of these pathways across 4 major cloud service providers (Amazon, Microsoft, Google, and Oracle) are presented. While cost comparisons, such as on-demand and spot pricing across the cloud service providers for the 3 pathways, are presented for completeness, the usefulness of managed services and cloud enterprise tools is elucidated. Managed services can complement the traditional workforce and expertise, while enterprise tools, such as federated learning, can overcome sample size challenges when implementing LLMs using health care data. Of the 3 pathways, TSP is expected to be the most resource-intensive regarding infrastructure and workforce while providing maximum customization, enhanced transparency, and performance. Because TSP trains the LLM using enterprise health care data, it is expected to harness the digital signatures of the population served by the health care system with the potential to impact outcomes. The use of pretrained models in FTP is a limitation. It may impact its performance because the training data used in the pretrained model may have hidden bias and may not necessarily be health care-related. However, FTP provides a balance between customization, cost, and performance. While OBP can be rapidly deployed, it provides minimal customization and transparency without guaranteeing long-term availability. OBP may also present challenges in interfacing seamlessly with downstream applications in health care settings with variations in pricing and use over time. Lack of customization in OBP can significantly limit its ability to impact outcomes. Finally, potential applications of LLMs in health care, including conversational artificial intelligence, chatbots, summarization, and machine translation, are highlighted. While the 3 implementation pathways discussed in this perspective have the potential to facilitate equitable adoption and democratization of LLMs, transitions between them may be necessary as the needs of health systems evolve. Understanding the economics and trade-offs of these onboarding pathways can guide their strategic adoption and demonstrate value while impacting health care outcomes favorably.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信