{"title":"全足加载时压力引起的微血管反应是人类足底独有的。","authors":"Erika E Howe, Leah R Bent","doi":"10.1111/micc.12893","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Foot sole plantar pressure generates transient but habitual cutaneous ischemia, which is even more exacerbated in atypical gait patterns. Thus, adequate post-occlusive reactive hyperaemia (PORH) is necessary to maintain skin health. Plantar pressure regional variance during daily tasks potentially generates region-specific PORH, crucial for ischemic defence.</p><p><strong>Aims: </strong>The current work investigated regional PORH across the human foot sole resulting from stance-like loading.</p><p><strong>Materials & methods: </strong>A loading device equipped with an in-line laser speckle contrast imager measured blood flux before, during, and after whole-foot loading for 2 and 10 min durations at 15% and 50% body weight. Flux was compared between six regions: the heel, lateral arch, medial arch, and fifth, third, and first metatarsals (MT).</p><p><strong>Results: </strong>Baseline flux was significantly greater in the 1MT and 3MT than all other regions. Loading occluded the heel, 5MT and 3MT more than all other regions. Regional PORH peak, time to peak, area under the curve, and recovery rate were ranked between regions.</p><p><strong>Discussion: </strong>The 3MT, followed by 5MT, overall had the strongest PORH response, suggesting a heightened protection against ischemia compared to other regions.</p><p><strong>Conclusion: </strong>This work highlights regional variations within a healthy foot, providing a framework for future ulcer risk assessments and interventions to preserve foot health.</p>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":" ","pages":"e12893"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure-Induced Microvascular Reactivity With Whole Foot Loading Is Unique Across the Human Foot Sole.\",\"authors\":\"Erika E Howe, Leah R Bent\",\"doi\":\"10.1111/micc.12893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Foot sole plantar pressure generates transient but habitual cutaneous ischemia, which is even more exacerbated in atypical gait patterns. Thus, adequate post-occlusive reactive hyperaemia (PORH) is necessary to maintain skin health. Plantar pressure regional variance during daily tasks potentially generates region-specific PORH, crucial for ischemic defence.</p><p><strong>Aims: </strong>The current work investigated regional PORH across the human foot sole resulting from stance-like loading.</p><p><strong>Materials & methods: </strong>A loading device equipped with an in-line laser speckle contrast imager measured blood flux before, during, and after whole-foot loading for 2 and 10 min durations at 15% and 50% body weight. Flux was compared between six regions: the heel, lateral arch, medial arch, and fifth, third, and first metatarsals (MT).</p><p><strong>Results: </strong>Baseline flux was significantly greater in the 1MT and 3MT than all other regions. Loading occluded the heel, 5MT and 3MT more than all other regions. Regional PORH peak, time to peak, area under the curve, and recovery rate were ranked between regions.</p><p><strong>Discussion: </strong>The 3MT, followed by 5MT, overall had the strongest PORH response, suggesting a heightened protection against ischemia compared to other regions.</p><p><strong>Conclusion: </strong>This work highlights regional variations within a healthy foot, providing a framework for future ulcer risk assessments and interventions to preserve foot health.</p>\",\"PeriodicalId\":18459,\"journal\":{\"name\":\"Microcirculation\",\"volume\":\" \",\"pages\":\"e12893\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/micc.12893\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/micc.12893","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Pressure-Induced Microvascular Reactivity With Whole Foot Loading Is Unique Across the Human Foot Sole.
Background: Foot sole plantar pressure generates transient but habitual cutaneous ischemia, which is even more exacerbated in atypical gait patterns. Thus, adequate post-occlusive reactive hyperaemia (PORH) is necessary to maintain skin health. Plantar pressure regional variance during daily tasks potentially generates region-specific PORH, crucial for ischemic defence.
Aims: The current work investigated regional PORH across the human foot sole resulting from stance-like loading.
Materials & methods: A loading device equipped with an in-line laser speckle contrast imager measured blood flux before, during, and after whole-foot loading for 2 and 10 min durations at 15% and 50% body weight. Flux was compared between six regions: the heel, lateral arch, medial arch, and fifth, third, and first metatarsals (MT).
Results: Baseline flux was significantly greater in the 1MT and 3MT than all other regions. Loading occluded the heel, 5MT and 3MT more than all other regions. Regional PORH peak, time to peak, area under the curve, and recovery rate were ranked between regions.
Discussion: The 3MT, followed by 5MT, overall had the strongest PORH response, suggesting a heightened protection against ischemia compared to other regions.
Conclusion: This work highlights regional variations within a healthy foot, providing a framework for future ulcer risk assessments and interventions to preserve foot health.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.