来自褐藻的β-1,3-葡聚糖:一种有望用于卵巢癌治疗的、靶向表观遗传调控因子 PRMTs 和 SIRTs 的表皮药物。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Varsha Virendra Palol, Kamran Waidha, Balasubramanian Moovarkumudalvan, Navya Valavath Baburajan, Suresh Kumar Saravanan, Divya Lakshmanan, Veni Subramanyam, Raj Kumar Chinnadurai
{"title":"来自褐藻的β-1,3-葡聚糖:一种有望用于卵巢癌治疗的、靶向表观遗传调控因子 PRMTs 和 SIRTs 的表皮药物。","authors":"Varsha Virendra Palol, Kamran Waidha, Balasubramanian Moovarkumudalvan, Navya Valavath Baburajan, Suresh Kumar Saravanan, Divya Lakshmanan, Veni Subramanyam, Raj Kumar Chinnadurai","doi":"10.1080/07391102.2024.2425832","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products serve as a valuable resource in drug discovery and the identification of bioactive molecules in the field of epimedicine, which targets epigenetic regulator enzymes through epidrugs. In this study, β-1,3-glucan (BG), a natural storage polysaccharide in <i>Euglena gracilis,</i> a well-known immunostimulatory agent, is propounded as a promising epidrug. To elucidate the therapeutic efficacy of BG against ovarian cancer, the molecular interactions between BG and epigenetic regulators, Protein Arginine Methyltransferases (PRMTs) and Sirtuins (SIRTs) were investigated using computational methods followed by <i>in vitro</i> gene expression studies in SKOV-3 ovarian cancer cell line. The binding energies of PRMT5 and SIRT5 against BG were observed as -65.5 and -68.2 kcal/mol, respectively. The <i>in vitro</i> cytotoxic effects of BG against human ovarian cancer cell line, SKOV-3 showed an IC<sub>50</sub> of 150 µg/mL at 48 h. Significant epigenetic modifications were observed to be influenced by BG which increased the gene expression of PRMT5, SIRT5 and Nrf2 to 0.3, 0.5, and 0.7 fold-change respectively, while the Nrf1/2 plasmid showed reduced reporter activity by 29%. Collectively, both <i>in silico</i> and <i>in vitro</i> studies provided valuable insights into the epigenetic regulation of PRMT5 and SIRT5 by BG <i>via</i> Nrf1/2. Nonetheless, further preclinical and clinical investigations are essential to validate the therapeutic properties of BG as an epidrug against ovarian cancer.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-16"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-1,3-glucan from <i>Euglena gracilis</i>: a promising epidrug targeting epigenetic regulators PRMTs and SIRTs for therapeutic applications in ovarian cancer.\",\"authors\":\"Varsha Virendra Palol, Kamran Waidha, Balasubramanian Moovarkumudalvan, Navya Valavath Baburajan, Suresh Kumar Saravanan, Divya Lakshmanan, Veni Subramanyam, Raj Kumar Chinnadurai\",\"doi\":\"10.1080/07391102.2024.2425832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural products serve as a valuable resource in drug discovery and the identification of bioactive molecules in the field of epimedicine, which targets epigenetic regulator enzymes through epidrugs. In this study, β-1,3-glucan (BG), a natural storage polysaccharide in <i>Euglena gracilis,</i> a well-known immunostimulatory agent, is propounded as a promising epidrug. To elucidate the therapeutic efficacy of BG against ovarian cancer, the molecular interactions between BG and epigenetic regulators, Protein Arginine Methyltransferases (PRMTs) and Sirtuins (SIRTs) were investigated using computational methods followed by <i>in vitro</i> gene expression studies in SKOV-3 ovarian cancer cell line. The binding energies of PRMT5 and SIRT5 against BG were observed as -65.5 and -68.2 kcal/mol, respectively. The <i>in vitro</i> cytotoxic effects of BG against human ovarian cancer cell line, SKOV-3 showed an IC<sub>50</sub> of 150 µg/mL at 48 h. Significant epigenetic modifications were observed to be influenced by BG which increased the gene expression of PRMT5, SIRT5 and Nrf2 to 0.3, 0.5, and 0.7 fold-change respectively, while the Nrf1/2 plasmid showed reduced reporter activity by 29%. Collectively, both <i>in silico</i> and <i>in vitro</i> studies provided valuable insights into the epigenetic regulation of PRMT5 and SIRT5 by BG <i>via</i> Nrf1/2. Nonetheless, further preclinical and clinical investigations are essential to validate the therapeutic properties of BG as an epidrug against ovarian cancer.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2425832\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2425832","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

天然产物是表观医学领域药物发现和生物活性分子鉴定的宝贵资源,表观医学通过表观药物靶向表观遗传调节酶。在这项研究中,β-1,3-葡聚糖(BG)被认为是一种有前景的表观药物,β-1,3-葡聚糖是Euglena gracilis的一种天然贮存多糖,也是一种著名的免疫刺激剂。为了阐明 BG 对卵巢癌的疗效,研究人员使用计算方法研究了 BG 与表观遗传调控因子、精氨酸甲基转移酶(PRMTs)和 Sirtuins(SIRTs)之间的分子相互作用,随后在 SKOV-3 卵巢癌细胞系中进行了体外基因表达研究。结果表明,PRMT5 和 SIRT5 与 BG 的结合能分别为 -65.5 和 -68.2 kcal/mol。BG对人类卵巢癌细胞株SKOV-3的体外细胞毒性作用显示,48小时后的IC50为150微克/毫升。BG对表观遗传修饰有显著影响,使PRMT5、SIRT5和Nrf2的基因表达分别增加了0.3、0.5和0.7倍,而Nrf1/2质粒的报告活性降低了29%。总之,硅学和体外研究为 BG 通过 Nrf1/2 对 PRMT5 和 SIRT5 进行表观遗传调控提供了有价值的见解。然而,进一步的临床前和临床研究对于验证 BG 作为一种表观药物对卵巢癌的治疗特性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
β-1,3-glucan from Euglena gracilis: a promising epidrug targeting epigenetic regulators PRMTs and SIRTs for therapeutic applications in ovarian cancer.

Natural products serve as a valuable resource in drug discovery and the identification of bioactive molecules in the field of epimedicine, which targets epigenetic regulator enzymes through epidrugs. In this study, β-1,3-glucan (BG), a natural storage polysaccharide in Euglena gracilis, a well-known immunostimulatory agent, is propounded as a promising epidrug. To elucidate the therapeutic efficacy of BG against ovarian cancer, the molecular interactions between BG and epigenetic regulators, Protein Arginine Methyltransferases (PRMTs) and Sirtuins (SIRTs) were investigated using computational methods followed by in vitro gene expression studies in SKOV-3 ovarian cancer cell line. The binding energies of PRMT5 and SIRT5 against BG were observed as -65.5 and -68.2 kcal/mol, respectively. The in vitro cytotoxic effects of BG against human ovarian cancer cell line, SKOV-3 showed an IC50 of 150 µg/mL at 48 h. Significant epigenetic modifications were observed to be influenced by BG which increased the gene expression of PRMT5, SIRT5 and Nrf2 to 0.3, 0.5, and 0.7 fold-change respectively, while the Nrf1/2 plasmid showed reduced reporter activity by 29%. Collectively, both in silico and in vitro studies provided valuable insights into the epigenetic regulation of PRMT5 and SIRT5 by BG via Nrf1/2. Nonetheless, further preclinical and clinical investigations are essential to validate the therapeutic properties of BG as an epidrug against ovarian cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信