Kanchan Lata Tripathi, Ayushi Chaudhary, Aftab Alam, Divyanshi Shukla, Rima Bhardwaj, Himani Badoni
{"title":"从 HER2 抑制剂复合物的结构动力学中获得的分子见解为开发新型乳腺癌药物铺平了道路。","authors":"Kanchan Lata Tripathi, Ayushi Chaudhary, Aftab Alam, Divyanshi Shukla, Rima Bhardwaj, Himani Badoni","doi":"10.1080/07391102.2024.2425835","DOIUrl":null,"url":null,"abstract":"<p><p>The human epidermal growth factor receptor 2 (HER2) is closely associated with the development and progression of breast cancer, making it a critical target for therapeutic interventions. In this study, we employed a comprehensive computational drug discovery strategy to identify potential inhibitors of HER2. Our approach combined virtual screening, re-docking procedures, molecular dynamics (MD) simulations, and free energy landscape analysis using principal component analysis (PCA). From the extensive PubChem library, we initially screened 733 compounds for their binding potential to HER2, using docking scores as a primary filter. These scores ranged notably from -11.172 to -7.028 kcal/mol, indicating substantial binding capacities. Following this screening, we selected four promising compounds (PubChem CID 166029206, 166544027, 21031510, and 11712721) along with a control compound (70I) for in-depth analysis. Utilizing the Amber software suite for MD simulations, we conducted 200-nanosecond simulations to assess the interactions and binding efficiencies of these selected compounds with HER2. We analysed the molecular interactions through various parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), and hydrogen bond formation patterns, free binding energy calculations. The PCA-based free energy landscape analysis revealed that these compounds consistently occupied a distinct low-energy basin, indicating their high stability and strong binding affinity for the HER2. This detailed analysis provided insights into the stability and conformational dynamics of these potential inhibitors when bound to the HER2. Our findings pave the way for further experimental validation and development of these compounds as therapeutic agents in breast cancer treatment.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-14"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular insights from structural dynamics of HER2-inhibitor complexes pave the way for new breast cancer drugs.\",\"authors\":\"Kanchan Lata Tripathi, Ayushi Chaudhary, Aftab Alam, Divyanshi Shukla, Rima Bhardwaj, Himani Badoni\",\"doi\":\"10.1080/07391102.2024.2425835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human epidermal growth factor receptor 2 (HER2) is closely associated with the development and progression of breast cancer, making it a critical target for therapeutic interventions. In this study, we employed a comprehensive computational drug discovery strategy to identify potential inhibitors of HER2. Our approach combined virtual screening, re-docking procedures, molecular dynamics (MD) simulations, and free energy landscape analysis using principal component analysis (PCA). From the extensive PubChem library, we initially screened 733 compounds for their binding potential to HER2, using docking scores as a primary filter. These scores ranged notably from -11.172 to -7.028 kcal/mol, indicating substantial binding capacities. Following this screening, we selected four promising compounds (PubChem CID 166029206, 166544027, 21031510, and 11712721) along with a control compound (70I) for in-depth analysis. Utilizing the Amber software suite for MD simulations, we conducted 200-nanosecond simulations to assess the interactions and binding efficiencies of these selected compounds with HER2. We analysed the molecular interactions through various parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), and hydrogen bond formation patterns, free binding energy calculations. The PCA-based free energy landscape analysis revealed that these compounds consistently occupied a distinct low-energy basin, indicating their high stability and strong binding affinity for the HER2. This detailed analysis provided insights into the stability and conformational dynamics of these potential inhibitors when bound to the HER2. Our findings pave the way for further experimental validation and development of these compounds as therapeutic agents in breast cancer treatment.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2425835\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2425835","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular insights from structural dynamics of HER2-inhibitor complexes pave the way for new breast cancer drugs.
The human epidermal growth factor receptor 2 (HER2) is closely associated with the development and progression of breast cancer, making it a critical target for therapeutic interventions. In this study, we employed a comprehensive computational drug discovery strategy to identify potential inhibitors of HER2. Our approach combined virtual screening, re-docking procedures, molecular dynamics (MD) simulations, and free energy landscape analysis using principal component analysis (PCA). From the extensive PubChem library, we initially screened 733 compounds for their binding potential to HER2, using docking scores as a primary filter. These scores ranged notably from -11.172 to -7.028 kcal/mol, indicating substantial binding capacities. Following this screening, we selected four promising compounds (PubChem CID 166029206, 166544027, 21031510, and 11712721) along with a control compound (70I) for in-depth analysis. Utilizing the Amber software suite for MD simulations, we conducted 200-nanosecond simulations to assess the interactions and binding efficiencies of these selected compounds with HER2. We analysed the molecular interactions through various parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), and hydrogen bond formation patterns, free binding energy calculations. The PCA-based free energy landscape analysis revealed that these compounds consistently occupied a distinct low-energy basin, indicating their high stability and strong binding affinity for the HER2. This detailed analysis provided insights into the stability and conformational dynamics of these potential inhibitors when bound to the HER2. Our findings pave the way for further experimental validation and development of these compounds as therapeutic agents in breast cancer treatment.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.