分子动力学模拟深入揭示了 ULK-101 对自噬激酶 ULK1/2 的效力和选择性。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Robert M Vaughan, Bradley M Dickson, Katie R Martin, Jeffrey P MacKeigan
{"title":"分子动力学模拟深入揭示了 ULK-101 对自噬激酶 ULK1/2 的效力和选择性。","authors":"Robert M Vaughan, Bradley M Dickson, Katie R Martin, Jeffrey P MacKeigan","doi":"10.1080/07391102.2024.2425833","DOIUrl":null,"url":null,"abstract":"<p><p>Kinase domains are highly conserved within proteins in both sequence and structure. Many factors, including phosphorylation, amino acid substitutions or mutations, and small molecule inhibitor binding, influence conformations of the kinase domain and enzymatic activity. ULK1 and ULK2 are serine/threonine kinases that serve important roles in autophagy, an intracellular recycling process capable of degrading proteins and organelles <i>via</i> fusion with lysosomes. ULK1/2 are emerging as therapeutic targets in human cancer, particularly KRAS-driven malignancies. Here, we performed molecular dynamics (MD) simulations to hypothesize bound poses for the ULK1/2 small molecule inhibitor, ULK-101. We observed stable bound states for ULK-101 to the adenosine triphosphate (ATP)-binding site of ULK2, coordinated by hydrogen bonding with the hinge backbone and the catalytic lysine sidechain. Notably, ULK-101 occupies a hydrophobic pocket associated with the N-terminus of the αC-helix. Large movements in the phosphate-binding loop (P-loop) are also associated with ULK-101 inhibitor binding and exit from ULK2. Together, our data support a model to explain ULK-101 potency toward ULK1/2.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-8"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics simulations provide insights into ULK-101 potency and selectivity toward autophagic kinases ULK1/2.\",\"authors\":\"Robert M Vaughan, Bradley M Dickson, Katie R Martin, Jeffrey P MacKeigan\",\"doi\":\"10.1080/07391102.2024.2425833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kinase domains are highly conserved within proteins in both sequence and structure. Many factors, including phosphorylation, amino acid substitutions or mutations, and small molecule inhibitor binding, influence conformations of the kinase domain and enzymatic activity. ULK1 and ULK2 are serine/threonine kinases that serve important roles in autophagy, an intracellular recycling process capable of degrading proteins and organelles <i>via</i> fusion with lysosomes. ULK1/2 are emerging as therapeutic targets in human cancer, particularly KRAS-driven malignancies. Here, we performed molecular dynamics (MD) simulations to hypothesize bound poses for the ULK1/2 small molecule inhibitor, ULK-101. We observed stable bound states for ULK-101 to the adenosine triphosphate (ATP)-binding site of ULK2, coordinated by hydrogen bonding with the hinge backbone and the catalytic lysine sidechain. Notably, ULK-101 occupies a hydrophobic pocket associated with the N-terminus of the αC-helix. Large movements in the phosphate-binding loop (P-loop) are also associated with ULK-101 inhibitor binding and exit from ULK2. Together, our data support a model to explain ULK-101 potency toward ULK1/2.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2425833\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2425833","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

激酶结构域在蛋白质中的序列和结构都高度保守。磷酸化、氨基酸置换或突变以及小分子抑制剂结合等许多因素都会影响激酶结构域的构象和酶活性。ULK1和ULK2是丝氨酸/苏氨酸激酶,在自噬过程中发挥重要作用,自噬是一种细胞内循环过程,能够通过与溶酶体融合降解蛋白质和细胞器。ULK1/2 正在成为人类癌症,尤其是 KRAS 驱动的恶性肿瘤的治疗靶点。在此,我们进行了分子动力学(MD)模拟,以假设 ULK1/2 小分子抑制剂 ULK-101 的结合态。我们观察到 ULK-101 与 ULK2 的三磷酸腺苷(ATP)结合位点的稳定结合态,通过氢键与铰链骨架和催化赖氨酸侧链协调。值得注意的是,ULK-101 占据了一个与 αC 螺旋 N 端相关的疏水袋。磷酸盐结合环(P-loop)的大幅移动也与 ULK-101 抑制剂结合和退出 ULK2 有关。总之,我们的数据支持一个模型来解释 ULK-101 对 ULK1/2 的效力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular dynamics simulations provide insights into ULK-101 potency and selectivity toward autophagic kinases ULK1/2.

Kinase domains are highly conserved within proteins in both sequence and structure. Many factors, including phosphorylation, amino acid substitutions or mutations, and small molecule inhibitor binding, influence conformations of the kinase domain and enzymatic activity. ULK1 and ULK2 are serine/threonine kinases that serve important roles in autophagy, an intracellular recycling process capable of degrading proteins and organelles via fusion with lysosomes. ULK1/2 are emerging as therapeutic targets in human cancer, particularly KRAS-driven malignancies. Here, we performed molecular dynamics (MD) simulations to hypothesize bound poses for the ULK1/2 small molecule inhibitor, ULK-101. We observed stable bound states for ULK-101 to the adenosine triphosphate (ATP)-binding site of ULK2, coordinated by hydrogen bonding with the hinge backbone and the catalytic lysine sidechain. Notably, ULK-101 occupies a hydrophobic pocket associated with the N-terminus of the αC-helix. Large movements in the phosphate-binding loop (P-loop) are also associated with ULK-101 inhibitor binding and exit from ULK2. Together, our data support a model to explain ULK-101 potency toward ULK1/2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信