利用计算方法找出有效的 CSF-1r 抑制剂,用于靶向治疗神经炎症。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anupriya Adhikari, Anwesh Pandey
{"title":"利用计算方法找出有效的 CSF-1r 抑制剂,用于靶向治疗神经炎症。","authors":"Anupriya Adhikari, Anwesh Pandey","doi":"10.1080/07391102.2024.2427366","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia, the primary cellular mediator of neuroinflammation, plays a pivotal role in numerous neurological disorders. Precise and non-invasive quantification of microglia is of paramount importance. Despite various investigations into cell-specific biomarkers for assessing neuroinflammation, many suffer from poor cellular specificity and low signal-to-noise ratios. Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, has emerged as a promising neuroinflammation biomarker with significant relevance to inflammatory diseases. Additionally, CSF-1R inhibitors (CSF-1Ri) have shown therapeutic potential in central nervous system (CNS) pathological conditions by depleting microglia. Therefore, the development of more specific CSF-1R inhibitors for targeting and treating various CNS insults and neurological disorders is imperative. This study focuses on the search for novel CSF-1R inhibitors. Based on the literature on CSF-1R inhibitors, we proposed and investigated ten ligands as novel CSF-1R inhibitors. Among these, the top three ligands, selected based on their maximum binding scores in docking calculations, are subjected to 100 nanoseconds of molecular dynamics (MD) simulation, alongside three reference ligands. All protein-ligand complexes remain stable throughout the dynamics and exhibit minimal fluctuations during the analysis. The results obtained through this study may prove significant for the future design of CSF-1R inhibitors with potential applications in the field of biomedicine.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-12"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discerning potent CSF-1r inhibitors for targeting and therapy of neuroinflammation using computational approaches.\",\"authors\":\"Anupriya Adhikari, Anwesh Pandey\",\"doi\":\"10.1080/07391102.2024.2427366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microglia, the primary cellular mediator of neuroinflammation, plays a pivotal role in numerous neurological disorders. Precise and non-invasive quantification of microglia is of paramount importance. Despite various investigations into cell-specific biomarkers for assessing neuroinflammation, many suffer from poor cellular specificity and low signal-to-noise ratios. Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, has emerged as a promising neuroinflammation biomarker with significant relevance to inflammatory diseases. Additionally, CSF-1R inhibitors (CSF-1Ri) have shown therapeutic potential in central nervous system (CNS) pathological conditions by depleting microglia. Therefore, the development of more specific CSF-1R inhibitors for targeting and treating various CNS insults and neurological disorders is imperative. This study focuses on the search for novel CSF-1R inhibitors. Based on the literature on CSF-1R inhibitors, we proposed and investigated ten ligands as novel CSF-1R inhibitors. Among these, the top three ligands, selected based on their maximum binding scores in docking calculations, are subjected to 100 nanoseconds of molecular dynamics (MD) simulation, alongside three reference ligands. All protein-ligand complexes remain stable throughout the dynamics and exhibit minimal fluctuations during the analysis. The results obtained through this study may prove significant for the future design of CSF-1R inhibitors with potential applications in the field of biomedicine.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2427366\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2427366","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小胶质细胞是神经炎症的主要细胞介质,在多种神经系统疾病中发挥着关键作用。对小胶质细胞进行精确、无创的量化至关重要。尽管对用于评估神经炎症的细胞特异性生物标记物进行了各种研究,但许多标记物都存在细胞特异性差和信噪比低的问题。集落刺激因子-1 受体(CSF-1R)又称 FMS 激酶,是一种很有前景的神经炎症生物标记物,与炎症性疾病有重要的相关性。此外,CSF-1R 抑制剂(CSF-1Ri)通过消耗小胶质细胞,在中枢神经系统(CNS)病理条件下显示出治疗潜力。因此,开发更具特异性的 CSF-1R 抑制剂来靶向治疗各种中枢神经系统损伤和神经系统疾病势在必行。本研究的重点是寻找新型 CSF-1R 抑制剂。根据有关 CSF-1R 抑制剂的文献,我们提出并研究了十种配体作为新型 CSF-1R 抑制剂。在这些配体中,根据它们在对接计算中的最大结合得分选出的前三种配体与三种参考配体一起进行了 100 纳秒的分子动力学(MD)模拟。在整个动力学过程中,所有蛋白质配体复合物都保持稳定,并且在分析过程中表现出最小的波动。这项研究获得的结果可能对未来设计CSF-1R抑制剂具有重要意义,并有可能应用于生物医学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discerning potent CSF-1r inhibitors for targeting and therapy of neuroinflammation using computational approaches.

Microglia, the primary cellular mediator of neuroinflammation, plays a pivotal role in numerous neurological disorders. Precise and non-invasive quantification of microglia is of paramount importance. Despite various investigations into cell-specific biomarkers for assessing neuroinflammation, many suffer from poor cellular specificity and low signal-to-noise ratios. Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, has emerged as a promising neuroinflammation biomarker with significant relevance to inflammatory diseases. Additionally, CSF-1R inhibitors (CSF-1Ri) have shown therapeutic potential in central nervous system (CNS) pathological conditions by depleting microglia. Therefore, the development of more specific CSF-1R inhibitors for targeting and treating various CNS insults and neurological disorders is imperative. This study focuses on the search for novel CSF-1R inhibitors. Based on the literature on CSF-1R inhibitors, we proposed and investigated ten ligands as novel CSF-1R inhibitors. Among these, the top three ligands, selected based on their maximum binding scores in docking calculations, are subjected to 100 nanoseconds of molecular dynamics (MD) simulation, alongside three reference ligands. All protein-ligand complexes remain stable throughout the dynamics and exhibit minimal fluctuations during the analysis. The results obtained through this study may prove significant for the future design of CSF-1R inhibitors with potential applications in the field of biomedicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信