{"title":"时间血糖变异性指标是否能揭示 1 型糖尿病患者的异常血糖变化率?","authors":"Robert Richardson","doi":"10.1177/19322968241298248","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We aimed to identify the normal range of glucose rates of change (RoC) observed in health and assess whether existing metrics of temporal glycemic variability (GV-timing), such as mean absolute glucose change (MAG) and continuous overlapping net glycemic action (CONGA), are predictive of abnormally rapid RoC in type 1 diabetes (T1D).</p><p><strong>Methods: </strong>We identified the normal range of RoC over one-hour intervals from continuous glucose monitoring (CGM) data of healthy individuals. Rapidly rising glucose was defined as RoC values above percentiles 99% (level 1, L1) or 99.9% (level 2, L2), and rapidly falling glucose as below 1% (L1) or 0.1% (L2). The percentage of time these thresholds are exceeded in a given individual is referred to as time in fluctuation (TIF). In a separate CGM dataset of 736 T1D individuals, we calculated TIF-L1 and TIF-L2, and compared them against corresponding values of MAG and CONGA.</p><p><strong>Results: </strong>The extremum percentiles of RoC observed in health are 0.1%: -80 mg/dL/h, 1%: -50 mg/dL, 99%: +56 mg/dL/h, and 99.9%: +89 mg/dL/h. The T1D individuals spend significantly more TIF at rates exceeding these thresholds (TIF-L1: median, 16.7% [interquartile range, 12.7-21.5], TIF-L2: 5.0% [3.1-7.8]) than healthy individuals (TIF-L1: 1.4% [0.6-2.8], TIF-L2: 0.0% [0.0-0.2]). Both MAG and CONGA are highly correlated with TIF-L1 and TIF-L2 (<i>r</i> > .95 in each pairwise comparison).</p><p><strong>Conclusions: </strong>Individuals with T1D spend significant time with glucose RoC exceeding those observed in health. Existing GV-timing metrics are strongly correlated with time with abnormal RoC. Incorporation of a GV-timing metric in clinical practice is recommended.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"19322968241298248"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571577/pdf/","citationCount":"0","resultStr":"{\"title\":\"Do Metrics of Temporal Glycemic Variability Reveal Abnormal Glucose Rates of Change in Type 1 Diabetes?\",\"authors\":\"Robert Richardson\",\"doi\":\"10.1177/19322968241298248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We aimed to identify the normal range of glucose rates of change (RoC) observed in health and assess whether existing metrics of temporal glycemic variability (GV-timing), such as mean absolute glucose change (MAG) and continuous overlapping net glycemic action (CONGA), are predictive of abnormally rapid RoC in type 1 diabetes (T1D).</p><p><strong>Methods: </strong>We identified the normal range of RoC over one-hour intervals from continuous glucose monitoring (CGM) data of healthy individuals. Rapidly rising glucose was defined as RoC values above percentiles 99% (level 1, L1) or 99.9% (level 2, L2), and rapidly falling glucose as below 1% (L1) or 0.1% (L2). The percentage of time these thresholds are exceeded in a given individual is referred to as time in fluctuation (TIF). In a separate CGM dataset of 736 T1D individuals, we calculated TIF-L1 and TIF-L2, and compared them against corresponding values of MAG and CONGA.</p><p><strong>Results: </strong>The extremum percentiles of RoC observed in health are 0.1%: -80 mg/dL/h, 1%: -50 mg/dL, 99%: +56 mg/dL/h, and 99.9%: +89 mg/dL/h. The T1D individuals spend significantly more TIF at rates exceeding these thresholds (TIF-L1: median, 16.7% [interquartile range, 12.7-21.5], TIF-L2: 5.0% [3.1-7.8]) than healthy individuals (TIF-L1: 1.4% [0.6-2.8], TIF-L2: 0.0% [0.0-0.2]). Both MAG and CONGA are highly correlated with TIF-L1 and TIF-L2 (<i>r</i> > .95 in each pairwise comparison).</p><p><strong>Conclusions: </strong>Individuals with T1D spend significant time with glucose RoC exceeding those observed in health. Existing GV-timing metrics are strongly correlated with time with abnormal RoC. Incorporation of a GV-timing metric in clinical practice is recommended.</p>\",\"PeriodicalId\":15475,\"journal\":{\"name\":\"Journal of Diabetes Science and Technology\",\"volume\":\" \",\"pages\":\"19322968241298248\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19322968241298248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241298248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Do Metrics of Temporal Glycemic Variability Reveal Abnormal Glucose Rates of Change in Type 1 Diabetes?
Background: We aimed to identify the normal range of glucose rates of change (RoC) observed in health and assess whether existing metrics of temporal glycemic variability (GV-timing), such as mean absolute glucose change (MAG) and continuous overlapping net glycemic action (CONGA), are predictive of abnormally rapid RoC in type 1 diabetes (T1D).
Methods: We identified the normal range of RoC over one-hour intervals from continuous glucose monitoring (CGM) data of healthy individuals. Rapidly rising glucose was defined as RoC values above percentiles 99% (level 1, L1) or 99.9% (level 2, L2), and rapidly falling glucose as below 1% (L1) or 0.1% (L2). The percentage of time these thresholds are exceeded in a given individual is referred to as time in fluctuation (TIF). In a separate CGM dataset of 736 T1D individuals, we calculated TIF-L1 and TIF-L2, and compared them against corresponding values of MAG and CONGA.
Results: The extremum percentiles of RoC observed in health are 0.1%: -80 mg/dL/h, 1%: -50 mg/dL, 99%: +56 mg/dL/h, and 99.9%: +89 mg/dL/h. The T1D individuals spend significantly more TIF at rates exceeding these thresholds (TIF-L1: median, 16.7% [interquartile range, 12.7-21.5], TIF-L2: 5.0% [3.1-7.8]) than healthy individuals (TIF-L1: 1.4% [0.6-2.8], TIF-L2: 0.0% [0.0-0.2]). Both MAG and CONGA are highly correlated with TIF-L1 and TIF-L2 (r > .95 in each pairwise comparison).
Conclusions: Individuals with T1D spend significant time with glucose RoC exceeding those observed in health. Existing GV-timing metrics are strongly correlated with time with abnormal RoC. Incorporation of a GV-timing metric in clinical practice is recommended.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.