{"title":"利用深度学习技术对钆醋酸增强肝胆相上的肝脏和肝脏病变进行高精度磁共振成像。","authors":"Haruka Kiyoyama, Masahiro Tanabe, Keiko Hideura, Yosuke Kawano, Keisuke Miyoshi, Naohiko Kamamura, Mayumi Higashi, Katsuyoshi Ito","doi":"10.1007/s11604-024-01693-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to investigate whether the high-precision magnetic resonance (MR) sequence using modified Fast 3D mode wheel and Precise IQ Engine (PIQE), that was collected in a wheel shape with sequential data filling in the k-space in the phase encode-slice encode plane, is feasible for breath-hold (BH) three-dimensional (3D) T1-weighted imaging of the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI in comparison to the compressed sensing (CS) sequence using Advanced Intelligent Clear-IQ Engine (AiCE).</p><p><strong>Methods: </strong>This retrospective study included 54 patients with focal hepatic lesions who underwent dynamic contrast-enhanced MRI. Both standard HBP images using CS with AiCE and high-precision HBP images using modified Fast 3D mode wheel and PIQE were obtained. Image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were evaluated using the Wilcoxon signed-rank test. p values of < 0.05 were considered to be statistically significant.</p><p><strong>Results: </strong>Scores for image noise, conspicuity of liver contours and intrahepatic structures, and overall image quality in high-precision HBP imaging using modified Fast 3D mode wheel and PIQE were significantly higher than those in HBP imaging using CS and AiCE (all p < 0.001). There was no significant difference in the presence of artifact and motion-related blurring. There were no significant differences between the sequences in SNR (p = 0.341) or CNR (p = 0.077). The detection rate of focal hepatic lesions was 71.4-85.3% in CS with AiCE, and 82.2-95.8% in modified Fast 3D mode wheel and PIQE.</p><p><strong>Conclusion: </strong>A high-precision MR sequence using a modified Fast 3D mode wheel and PIQE is applicable for the HBP of BH 3D T1-weighted imaging.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":"649-655"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953077/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-precision MRI of liver and hepatic lesions on gadoxetic acid-enhanced hepatobiliary phase using a deep learning technique.\",\"authors\":\"Haruka Kiyoyama, Masahiro Tanabe, Keiko Hideura, Yosuke Kawano, Keisuke Miyoshi, Naohiko Kamamura, Mayumi Higashi, Katsuyoshi Ito\",\"doi\":\"10.1007/s11604-024-01693-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The purpose of this study was to investigate whether the high-precision magnetic resonance (MR) sequence using modified Fast 3D mode wheel and Precise IQ Engine (PIQE), that was collected in a wheel shape with sequential data filling in the k-space in the phase encode-slice encode plane, is feasible for breath-hold (BH) three-dimensional (3D) T1-weighted imaging of the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI in comparison to the compressed sensing (CS) sequence using Advanced Intelligent Clear-IQ Engine (AiCE).</p><p><strong>Methods: </strong>This retrospective study included 54 patients with focal hepatic lesions who underwent dynamic contrast-enhanced MRI. Both standard HBP images using CS with AiCE and high-precision HBP images using modified Fast 3D mode wheel and PIQE were obtained. Image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were evaluated using the Wilcoxon signed-rank test. p values of < 0.05 were considered to be statistically significant.</p><p><strong>Results: </strong>Scores for image noise, conspicuity of liver contours and intrahepatic structures, and overall image quality in high-precision HBP imaging using modified Fast 3D mode wheel and PIQE were significantly higher than those in HBP imaging using CS and AiCE (all p < 0.001). There was no significant difference in the presence of artifact and motion-related blurring. There were no significant differences between the sequences in SNR (p = 0.341) or CNR (p = 0.077). The detection rate of focal hepatic lesions was 71.4-85.3% in CS with AiCE, and 82.2-95.8% in modified Fast 3D mode wheel and PIQE.</p><p><strong>Conclusion: </strong>A high-precision MR sequence using a modified Fast 3D mode wheel and PIQE is applicable for the HBP of BH 3D T1-weighted imaging.</p>\",\"PeriodicalId\":14691,\"journal\":{\"name\":\"Japanese Journal of Radiology\",\"volume\":\" \",\"pages\":\"649-655\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953077/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11604-024-01693-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-024-01693-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
High-precision MRI of liver and hepatic lesions on gadoxetic acid-enhanced hepatobiliary phase using a deep learning technique.
Purpose: The purpose of this study was to investigate whether the high-precision magnetic resonance (MR) sequence using modified Fast 3D mode wheel and Precise IQ Engine (PIQE), that was collected in a wheel shape with sequential data filling in the k-space in the phase encode-slice encode plane, is feasible for breath-hold (BH) three-dimensional (3D) T1-weighted imaging of the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI in comparison to the compressed sensing (CS) sequence using Advanced Intelligent Clear-IQ Engine (AiCE).
Methods: This retrospective study included 54 patients with focal hepatic lesions who underwent dynamic contrast-enhanced MRI. Both standard HBP images using CS with AiCE and high-precision HBP images using modified Fast 3D mode wheel and PIQE were obtained. Image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were evaluated using the Wilcoxon signed-rank test. p values of < 0.05 were considered to be statistically significant.
Results: Scores for image noise, conspicuity of liver contours and intrahepatic structures, and overall image quality in high-precision HBP imaging using modified Fast 3D mode wheel and PIQE were significantly higher than those in HBP imaging using CS and AiCE (all p < 0.001). There was no significant difference in the presence of artifact and motion-related blurring. There were no significant differences between the sequences in SNR (p = 0.341) or CNR (p = 0.077). The detection rate of focal hepatic lesions was 71.4-85.3% in CS with AiCE, and 82.2-95.8% in modified Fast 3D mode wheel and PIQE.
Conclusion: A high-precision MR sequence using a modified Fast 3D mode wheel and PIQE is applicable for the HBP of BH 3D T1-weighted imaging.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.