Iris Ten Klooster, Hanneke Kip, Sina L Beyer, Lisette J E W C van Gemert-Pijnen, Saskia M Kelders
{"title":"厘清电子医疗技术的个性化和定制化概念:多方法定性研究","authors":"Iris Ten Klooster, Hanneke Kip, Sina L Beyer, Lisette J E W C van Gemert-Pijnen, Saskia M Kelders","doi":"10.2196/50497","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although personalization and tailoring have been identified as alternatives to a \"one-size-fits-all\" approach for eHealth technologies, there is no common understanding of these two concepts and how they should be applied.</p><p><strong>Objective: </strong>This study aims to describe (1) how tailoring and personalization are defined in the literature and by eHealth experts, and what the differences and similarities are; (2) what type of variables can be used to segment eHealth users into more homogeneous groups or at the individual level; (3) what elements of eHealth technologies are adapted to these segments; and (4) how the segments are matched with eHealth adaptations.</p><p><strong>Methods: </strong>We used a multimethod qualitative study design. To gain insights into the definitions of personalization and tailoring, definitions were collected from the literature and through interviews with eHealth experts. In addition, the interviews included questions about how users can be segmented and how eHealth can be adapted accordingly, and responses to 3 vignettes of examples of eHealth technologies, varying in personalization and tailoring strategies to elicit responses about views from stakeholders on how the two components were applied and matched in different contexts.</p><p><strong>Results: </strong>A total of 28 unique definitions of tailoring and 16 unique definitions of personalization were collected from the literature and interviews. The definitions of tailoring and personalization varied in their components, namely adaptation, individuals, user groups, preferences, symptoms, characteristics, context, behavior, content, identification, feedback, channel, design, computerization, and outcomes. During the interviews, participants mentioned 9 types of variables that can be used to segment eHealth users, namely demographics, preferences, health variables, psychological variables, behavioral variables, individual determinants, environmental information, intervention interaction, and technology variables. In total, 5 elements were mentioned that can be adapted to those segments, namely channeling, content, graphical, functionalities, and behavior change strategy. Participants mentioned substantiation methods and variable levels as two components for matching the segmentations with adaptations.</p><p><strong>Conclusions: </strong>Tailoring and personalization are multidimensional concepts, and variability and technology affordances seem to determine whether and how personalization and tailoring should be applied to eHealth technologies. On the basis of our findings, tailoring and personalization can be differentiated by the way that segmentations and adaptations are matched. Tailoring matches segmentations and adaptations based on general group characteristics using if-then algorithms, whereas personalization involves the direct insertion of user information (such as name) or adaptations based on individual-level inferences. We argue that future research should focus on how inferences can be made at the individual level to further develop the field of personalized eHealth.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"26 ","pages":"e50497"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clarifying the Concepts of Personalization and Tailoring of eHealth Technologies: Multimethod Qualitative Study.\",\"authors\":\"Iris Ten Klooster, Hanneke Kip, Sina L Beyer, Lisette J E W C van Gemert-Pijnen, Saskia M Kelders\",\"doi\":\"10.2196/50497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Although personalization and tailoring have been identified as alternatives to a \\\"one-size-fits-all\\\" approach for eHealth technologies, there is no common understanding of these two concepts and how they should be applied.</p><p><strong>Objective: </strong>This study aims to describe (1) how tailoring and personalization are defined in the literature and by eHealth experts, and what the differences and similarities are; (2) what type of variables can be used to segment eHealth users into more homogeneous groups or at the individual level; (3) what elements of eHealth technologies are adapted to these segments; and (4) how the segments are matched with eHealth adaptations.</p><p><strong>Methods: </strong>We used a multimethod qualitative study design. To gain insights into the definitions of personalization and tailoring, definitions were collected from the literature and through interviews with eHealth experts. In addition, the interviews included questions about how users can be segmented and how eHealth can be adapted accordingly, and responses to 3 vignettes of examples of eHealth technologies, varying in personalization and tailoring strategies to elicit responses about views from stakeholders on how the two components were applied and matched in different contexts.</p><p><strong>Results: </strong>A total of 28 unique definitions of tailoring and 16 unique definitions of personalization were collected from the literature and interviews. The definitions of tailoring and personalization varied in their components, namely adaptation, individuals, user groups, preferences, symptoms, characteristics, context, behavior, content, identification, feedback, channel, design, computerization, and outcomes. During the interviews, participants mentioned 9 types of variables that can be used to segment eHealth users, namely demographics, preferences, health variables, psychological variables, behavioral variables, individual determinants, environmental information, intervention interaction, and technology variables. In total, 5 elements were mentioned that can be adapted to those segments, namely channeling, content, graphical, functionalities, and behavior change strategy. Participants mentioned substantiation methods and variable levels as two components for matching the segmentations with adaptations.</p><p><strong>Conclusions: </strong>Tailoring and personalization are multidimensional concepts, and variability and technology affordances seem to determine whether and how personalization and tailoring should be applied to eHealth technologies. On the basis of our findings, tailoring and personalization can be differentiated by the way that segmentations and adaptations are matched. Tailoring matches segmentations and adaptations based on general group characteristics using if-then algorithms, whereas personalization involves the direct insertion of user information (such as name) or adaptations based on individual-level inferences. We argue that future research should focus on how inferences can be made at the individual level to further develop the field of personalized eHealth.</p>\",\"PeriodicalId\":16337,\"journal\":{\"name\":\"Journal of Medical Internet Research\",\"volume\":\"26 \",\"pages\":\"e50497\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Internet Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/50497\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/50497","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Clarifying the Concepts of Personalization and Tailoring of eHealth Technologies: Multimethod Qualitative Study.
Background: Although personalization and tailoring have been identified as alternatives to a "one-size-fits-all" approach for eHealth technologies, there is no common understanding of these two concepts and how they should be applied.
Objective: This study aims to describe (1) how tailoring and personalization are defined in the literature and by eHealth experts, and what the differences and similarities are; (2) what type of variables can be used to segment eHealth users into more homogeneous groups or at the individual level; (3) what elements of eHealth technologies are adapted to these segments; and (4) how the segments are matched with eHealth adaptations.
Methods: We used a multimethod qualitative study design. To gain insights into the definitions of personalization and tailoring, definitions were collected from the literature and through interviews with eHealth experts. In addition, the interviews included questions about how users can be segmented and how eHealth can be adapted accordingly, and responses to 3 vignettes of examples of eHealth technologies, varying in personalization and tailoring strategies to elicit responses about views from stakeholders on how the two components were applied and matched in different contexts.
Results: A total of 28 unique definitions of tailoring and 16 unique definitions of personalization were collected from the literature and interviews. The definitions of tailoring and personalization varied in their components, namely adaptation, individuals, user groups, preferences, symptoms, characteristics, context, behavior, content, identification, feedback, channel, design, computerization, and outcomes. During the interviews, participants mentioned 9 types of variables that can be used to segment eHealth users, namely demographics, preferences, health variables, psychological variables, behavioral variables, individual determinants, environmental information, intervention interaction, and technology variables. In total, 5 elements were mentioned that can be adapted to those segments, namely channeling, content, graphical, functionalities, and behavior change strategy. Participants mentioned substantiation methods and variable levels as two components for matching the segmentations with adaptations.
Conclusions: Tailoring and personalization are multidimensional concepts, and variability and technology affordances seem to determine whether and how personalization and tailoring should be applied to eHealth technologies. On the basis of our findings, tailoring and personalization can be differentiated by the way that segmentations and adaptations are matched. Tailoring matches segmentations and adaptations based on general group characteristics using if-then algorithms, whereas personalization involves the direct insertion of user information (such as name) or adaptations based on individual-level inferences. We argue that future research should focus on how inferences can be made at the individual level to further develop the field of personalized eHealth.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.