补体分子C3a通过C3aR-ERK-P2X7-NLRP3炎症体信号轴诱导神经炎症,加剧蛛网膜下腔出血后的早期脑损伤

IF 4.5 2区 医学 Q2 CELL BIOLOGY
Yuanyuan Ming, Panpan Zhao, Hongwei Zhang, Ziyuan Zhang, Zhengqian Huang, Le Zhang, Yong Sun, Xiangdong Li
{"title":"补体分子C3a通过C3aR-ERK-P2X7-NLRP3炎症体信号轴诱导神经炎症,加剧蛛网膜下腔出血后的早期脑损伤","authors":"Yuanyuan Ming, Panpan Zhao, Hongwei Zhang, Ziyuan Zhang, Zhengqian Huang, Le Zhang, Yong Sun, Xiangdong Li","doi":"10.1007/s10753-024-02155-7","DOIUrl":null,"url":null,"abstract":"<p><p>An important aspect of the pathophysiology of early brain damage (EBI) after subarachnoid hemorrhage (SAH) is inflammasome-mediated neuroinflammation. It has been demonstrated that C3aR activation exacerbates neuronal damage in a number of neurological disorders. This study aims to explore the role of C3a in activating the NLRP3 inflammasome and exacerbating neuroinflammation after SAH. Preprocessing of RNA-seq transcriptome datasets using bioinformatics analysis, and screening of differentially expressed genes between SAH patients and healthy individuals from the GEO database. Internal carotid artery puncture was performed to establish SAH models in rats and mice. SAH grading, neurological scoring, brain water content, behavioral analysis, and assessments using ELISA, Western blot, immunofluorescence, and immunohistochemistry were conducted. An in vitro model of SAH was induced in BV-2 cells treated with heme (200 μM). The mechanism of C3a in post-SAH neuroinflammation was studied by interfering with and inhibiting C3aR. Results showed that the expression of C3aR was upregulated in the GEO dataset (serum of SAH patients) and identified as a key differential gene in SAH. Further, elevated levels of C3a were found in the cerebrospinal fluid of clinically collected SAH patients. In the cerebral cortex and/or serum of SAH rats, expression of C3a, IL-1β, IL-6, TNF-α, CD11b, and Ki67 were significantly increased, while IL-10 was significantly decreased. Correlation analysis revealed that C3a showed negative correlation with IL-10 and positive correlation with IL-1β, IL-6, TNF-α, CD11b, and Ki67. After stimulation with heme, protein levels of C3a increased in BV-2 cells. Interfering with C3aR significantly reduced LDH release, IL-1β secretion, Caspase1 activation, levels of NLRP3 expression and ASC oligomerization, and ATP release after heme stimulation in BV-2. Subsequently, the addition of inhibitors of ERK1/2 phosphorylation demonstrated that C3a promotes ATP efflux by activating ERK1/2 phosphorylation, thereby activating P2X7. Further addition of JNJ-55308942 (a P2X7R antagonist) revealed that C3a activated the NLRP3 inflammasome via P2X7. Finally, administering SB290157 (a C3aR inhibitor) in vivo effectively alleviated brain edema, reduced mortality, improved Garcia score, ameliorated motor dysfunction, and suppressed inflammation and NLRP3 inflammasome activation in mice after SAH. Overall, C3a exacerbates EBI-associated NLRP3 inflammasome and neuroinflammation via the C3aR-ERK-P2X7 pathway after SAH. Inhibiting C3aR may serve as a one possible treatment approach to alleviate SAH after EBI.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complement Molecule C3a Exacerbates Early Brain Injury After Subarachnoid Hemorrhage by Inducing Neuroinflammation Through the C3aR-ERK-P2X7-NLRP3 Inflammasome Signaling Axis.\",\"authors\":\"Yuanyuan Ming, Panpan Zhao, Hongwei Zhang, Ziyuan Zhang, Zhengqian Huang, Le Zhang, Yong Sun, Xiangdong Li\",\"doi\":\"10.1007/s10753-024-02155-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important aspect of the pathophysiology of early brain damage (EBI) after subarachnoid hemorrhage (SAH) is inflammasome-mediated neuroinflammation. It has been demonstrated that C3aR activation exacerbates neuronal damage in a number of neurological disorders. This study aims to explore the role of C3a in activating the NLRP3 inflammasome and exacerbating neuroinflammation after SAH. Preprocessing of RNA-seq transcriptome datasets using bioinformatics analysis, and screening of differentially expressed genes between SAH patients and healthy individuals from the GEO database. Internal carotid artery puncture was performed to establish SAH models in rats and mice. SAH grading, neurological scoring, brain water content, behavioral analysis, and assessments using ELISA, Western blot, immunofluorescence, and immunohistochemistry were conducted. An in vitro model of SAH was induced in BV-2 cells treated with heme (200 μM). The mechanism of C3a in post-SAH neuroinflammation was studied by interfering with and inhibiting C3aR. Results showed that the expression of C3aR was upregulated in the GEO dataset (serum of SAH patients) and identified as a key differential gene in SAH. Further, elevated levels of C3a were found in the cerebrospinal fluid of clinically collected SAH patients. In the cerebral cortex and/or serum of SAH rats, expression of C3a, IL-1β, IL-6, TNF-α, CD11b, and Ki67 were significantly increased, while IL-10 was significantly decreased. Correlation analysis revealed that C3a showed negative correlation with IL-10 and positive correlation with IL-1β, IL-6, TNF-α, CD11b, and Ki67. After stimulation with heme, protein levels of C3a increased in BV-2 cells. Interfering with C3aR significantly reduced LDH release, IL-1β secretion, Caspase1 activation, levels of NLRP3 expression and ASC oligomerization, and ATP release after heme stimulation in BV-2. Subsequently, the addition of inhibitors of ERK1/2 phosphorylation demonstrated that C3a promotes ATP efflux by activating ERK1/2 phosphorylation, thereby activating P2X7. Further addition of JNJ-55308942 (a P2X7R antagonist) revealed that C3a activated the NLRP3 inflammasome via P2X7. Finally, administering SB290157 (a C3aR inhibitor) in vivo effectively alleviated brain edema, reduced mortality, improved Garcia score, ameliorated motor dysfunction, and suppressed inflammation and NLRP3 inflammasome activation in mice after SAH. Overall, C3a exacerbates EBI-associated NLRP3 inflammasome and neuroinflammation via the C3aR-ERK-P2X7 pathway after SAH. Inhibiting C3aR may serve as a one possible treatment approach to alleviate SAH after EBI.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02155-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02155-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛛网膜下腔出血(SAH)后早期脑损伤(EBI)病理生理学的一个重要方面是炎性体介导的神经炎症。已有研究表明,C3aR 的激活会加剧多种神经系统疾病的神经元损伤。本研究旨在探讨C3a在激活NLRP3炎性体和加重SAH后神经炎症中的作用。利用生物信息学分析对 RNA-seq 转录组数据集进行预处理,并从 GEO 数据库中筛选 SAH 患者与健康人之间的差异表达基因。对大鼠和小鼠进行颈内动脉穿刺以建立 SAH 模型。对 SAH 进行分级、神经系统评分、脑含水量、行为分析,并使用 ELISA、Western 印迹、免疫荧光和免疫组化进行评估。在用血红素(200 μM)处理的 BV-2 细胞中诱导 SAH 体外模型。通过干扰和抑制 C3aR 研究了 C3a 在 SAH 后神经炎症中的作用机制。结果显示,C3aR在GEO数据集(SAH患者血清)中表达上调,并被确定为SAH的关键差异基因。此外,在临床收集的 SAH 患者脑脊液中发现 C3a 水平升高。在 SAH 大鼠的大脑皮层和/或血清中,C3a、IL-1β、IL-6、TNF-α、CD11b 和 Ki67 的表达明显升高,而 IL-10 则明显降低。相关分析表明,C3a 与 IL-10 呈负相关,与 IL-1β、IL-6、TNF-α、CD11b 和 Ki67 呈正相关。用血红素刺激后,BV-2 细胞中的 C3a 蛋白水平升高。干扰 C3aR 可显著减少血红素刺激 BV-2 细胞后 LDH 的释放、IL-1β 的分泌、Caspase1 的活化、NLRP3 的表达和 ASC 的寡聚水平以及 ATP 的释放。随后,加入 ERK1/2 磷酸化抑制剂证明,C3a 通过激活 ERK1/2 磷酸化促进 ATP 外流,从而激活 P2X7。进一步加入 JNJ-55308942(一种 P2X7R 拮抗剂)后发现,C3a 通过 P2X7 激活了 NLRP3 炎性体。最后,体内注射 SB290157(一种 C3aR 抑制剂)可有效缓解 SAH 后小鼠的脑水肿、降低死亡率、改善加西亚评分、改善运动功能障碍,并抑制炎症和 NLRP3 炎症小体的激活。总之,C3a 会通过 C3aR-ERK-P2X7 通路加剧 SAH 后与 EBI 相关的 NLRP3 炎性体和神经炎症。抑制 C3aR 可能是缓解 EBI 后 SAH 的一种治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complement Molecule C3a Exacerbates Early Brain Injury After Subarachnoid Hemorrhage by Inducing Neuroinflammation Through the C3aR-ERK-P2X7-NLRP3 Inflammasome Signaling Axis.

An important aspect of the pathophysiology of early brain damage (EBI) after subarachnoid hemorrhage (SAH) is inflammasome-mediated neuroinflammation. It has been demonstrated that C3aR activation exacerbates neuronal damage in a number of neurological disorders. This study aims to explore the role of C3a in activating the NLRP3 inflammasome and exacerbating neuroinflammation after SAH. Preprocessing of RNA-seq transcriptome datasets using bioinformatics analysis, and screening of differentially expressed genes between SAH patients and healthy individuals from the GEO database. Internal carotid artery puncture was performed to establish SAH models in rats and mice. SAH grading, neurological scoring, brain water content, behavioral analysis, and assessments using ELISA, Western blot, immunofluorescence, and immunohistochemistry were conducted. An in vitro model of SAH was induced in BV-2 cells treated with heme (200 μM). The mechanism of C3a in post-SAH neuroinflammation was studied by interfering with and inhibiting C3aR. Results showed that the expression of C3aR was upregulated in the GEO dataset (serum of SAH patients) and identified as a key differential gene in SAH. Further, elevated levels of C3a were found in the cerebrospinal fluid of clinically collected SAH patients. In the cerebral cortex and/or serum of SAH rats, expression of C3a, IL-1β, IL-6, TNF-α, CD11b, and Ki67 were significantly increased, while IL-10 was significantly decreased. Correlation analysis revealed that C3a showed negative correlation with IL-10 and positive correlation with IL-1β, IL-6, TNF-α, CD11b, and Ki67. After stimulation with heme, protein levels of C3a increased in BV-2 cells. Interfering with C3aR significantly reduced LDH release, IL-1β secretion, Caspase1 activation, levels of NLRP3 expression and ASC oligomerization, and ATP release after heme stimulation in BV-2. Subsequently, the addition of inhibitors of ERK1/2 phosphorylation demonstrated that C3a promotes ATP efflux by activating ERK1/2 phosphorylation, thereby activating P2X7. Further addition of JNJ-55308942 (a P2X7R antagonist) revealed that C3a activated the NLRP3 inflammasome via P2X7. Finally, administering SB290157 (a C3aR inhibitor) in vivo effectively alleviated brain edema, reduced mortality, improved Garcia score, ameliorated motor dysfunction, and suppressed inflammation and NLRP3 inflammasome activation in mice after SAH. Overall, C3a exacerbates EBI-associated NLRP3 inflammasome and neuroinflammation via the C3aR-ERK-P2X7 pathway after SAH. Inhibiting C3aR may serve as a one possible treatment approach to alleviate SAH after EBI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信