在实验室-CMOS 电容传感平台上对癌细胞的有丝分裂和迁移进行机器学习识别和分类。

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ching-Yi Lin, Marc Dandin
{"title":"在实验室-CMOS 电容传感平台上对癌细胞的有丝分裂和迁移进行机器学习识别和分类。","authors":"Ching-Yi Lin, Marc Dandin","doi":"10.1109/JBHI.2024.3486251","DOIUrl":null,"url":null,"abstract":"<p><p>Cell culture assays play a vital role in various fields of biology. Conventional assay techniques like immunohistochemistry, immunofluorescence, and flow cytometry offer valuable insights into cell phenotype and behavior. However, each of these techniques requires labeling or staining, and this is a major drawback, specifically in applications that require compact and integrated analytical devices. To address this shortcoming, CMOS capacitance sensors capable of conducting label-free cell culture assays have been proposed. In this paper, we present a computational framework for further augmenting the capabilities of these capacitance sensors. In our framework, identification and classification of mitosis and migration are achieved by leveraging observations from measured capacitance time series data. Specifically, we engineered two time series features that enable discriminating cell behaviors at the single-cell level. Our feature representation achieves an area under curve (AUC) of 0.719 in the receiver operating characteristic (ROC) curve. Additionally, we show that our feature representation technique is applicable across arbitrary experiments, as validated by a leave-one-run-out test yielding an F-1 score of 0.803 and a G-Mean of 0.647.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing platform.\",\"authors\":\"Ching-Yi Lin, Marc Dandin\",\"doi\":\"10.1109/JBHI.2024.3486251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell culture assays play a vital role in various fields of biology. Conventional assay techniques like immunohistochemistry, immunofluorescence, and flow cytometry offer valuable insights into cell phenotype and behavior. However, each of these techniques requires labeling or staining, and this is a major drawback, specifically in applications that require compact and integrated analytical devices. To address this shortcoming, CMOS capacitance sensors capable of conducting label-free cell culture assays have been proposed. In this paper, we present a computational framework for further augmenting the capabilities of these capacitance sensors. In our framework, identification and classification of mitosis and migration are achieved by leveraging observations from measured capacitance time series data. Specifically, we engineered two time series features that enable discriminating cell behaviors at the single-cell level. Our feature representation achieves an area under curve (AUC) of 0.719 in the receiver operating characteristic (ROC) curve. Additionally, we show that our feature representation technique is applicable across arbitrary experiments, as validated by a leave-one-run-out test yielding an F-1 score of 0.803 and a G-Mean of 0.647.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3486251\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3486251","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

细胞培养检测在生物学的各个领域都发挥着重要作用。免疫组化、免疫荧光和流式细胞术等传统检测技术为了解细胞表型和行为提供了宝贵的信息。然而,这些技术中的每一种都需要标记或染色,这是一个主要缺点,特别是在需要紧凑型集成分析设备的应用中。为了解决这一缺陷,有人提出了能够进行无标记细胞培养测定的 CMOS 电容传感器。在本文中,我们提出了一个计算框架,用于进一步增强这些电容传感器的功能。在我们的框架中,有丝分裂和迁移的识别和分类是通过利用测量到的电容时间序列数据来实现的。具体来说,我们设计了两个时间序列特征,可在单细胞水平上区分细胞行为。我们的特征表示在接收者操作特征曲线(ROC)上的曲线下面积(AUC)达到了 0.719。此外,我们还证明了我们的特征表征技术适用于任意实验,这一点已通过 "leave-one-run-out "测试得到验证,该测试的 F-1 得分为 0.803,G-Mean 为 0.647。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing platform.

Cell culture assays play a vital role in various fields of biology. Conventional assay techniques like immunohistochemistry, immunofluorescence, and flow cytometry offer valuable insights into cell phenotype and behavior. However, each of these techniques requires labeling or staining, and this is a major drawback, specifically in applications that require compact and integrated analytical devices. To address this shortcoming, CMOS capacitance sensors capable of conducting label-free cell culture assays have been proposed. In this paper, we present a computational framework for further augmenting the capabilities of these capacitance sensors. In our framework, identification and classification of mitosis and migration are achieved by leveraging observations from measured capacitance time series data. Specifically, we engineered two time series features that enable discriminating cell behaviors at the single-cell level. Our feature representation achieves an area under curve (AUC) of 0.719 in the receiver operating characteristic (ROC) curve. Additionally, we show that our feature representation technique is applicable across arbitrary experiments, as validated by a leave-one-run-out test yielding an F-1 score of 0.803 and a G-Mean of 0.647.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信