Hongyu Zhou , Jun Xiao , Qi Cheng, Wen Wang, He Peng, Xiaojian Lin, Jiajun Chen, Xingya Wang
{"title":"二甲双胍通过AMPK介导的GDF15诱导作用抑制非小细胞肺癌细胞的迁移和上皮细胞向间质转化。","authors":"Hongyu Zhou , Jun Xiao , Qi Cheng, Wen Wang, He Peng, Xiaojian Lin, Jiajun Chen, Xingya Wang","doi":"10.1016/j.ejphar.2024.177127","DOIUrl":null,"url":null,"abstract":"<div><div>The growth differentiation factor 15 (GDF15) may serve as a biomarker of metformin, which mediates the bodyweight lowering effect of metformin. However, whether GDF15 also serves as a molecular target of metformin to inhibit carcinogenesis remains largely unknown. This study examined the role and molecular mechanisms of GDF15 in the anticancer effects of metformin in non-small cell lung cancer (NSCLC) cells, which has never been reported before. We found that metformin significantly inhibited the migration of NSCLC A549 and NCI-H460 cells and reduced the expression of epithelial-to-mesenchymal transition (EMT)-related molecules, including neuro-cadherin (N-cadherin), matrix metalloproteinase 2 (MMP2), and the zinc finger transcription factor Snail, but increased epithelial cadherin (E-cadherin) expression. Furthermore, metformin increased GDF15 and its upstream transcription factors activated transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP) expressions and increased AMP-activated protein kinase (AMPK) phosphorylation in NSCLC cells. GDF15 siRNA partially reverses the inhibitory effect of metformin on NSCLC cell migration. Moreover, metformin-induced increases in GDF15, CHOP, and ATF4 expression and the inhibition of migration were partially reversed by treatment with Compound C, a specific AMPK inhibitor. Meanwhile, metformin significantly inhibited NCI-H460 xenograft tumor growth in nude mice, increased GDF15 expression, and regulated EMT- and migration-related protein expression in xenograft tumors. In conclusion, our results provide novel insights into revealing that GDF15 can serve as a potential molecular target of metformin owing to its anti-cancer effect in NSCLC, which is mediated by AMPK activation.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"985 ","pages":"Article 177127"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metformin inhibits migration and epithelial-to-mesenchymal transition in non-small cell lung cancer cells through AMPK-mediated GDF15 induction\",\"authors\":\"Hongyu Zhou , Jun Xiao , Qi Cheng, Wen Wang, He Peng, Xiaojian Lin, Jiajun Chen, Xingya Wang\",\"doi\":\"10.1016/j.ejphar.2024.177127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growth differentiation factor 15 (GDF15) may serve as a biomarker of metformin, which mediates the bodyweight lowering effect of metformin. However, whether GDF15 also serves as a molecular target of metformin to inhibit carcinogenesis remains largely unknown. This study examined the role and molecular mechanisms of GDF15 in the anticancer effects of metformin in non-small cell lung cancer (NSCLC) cells, which has never been reported before. We found that metformin significantly inhibited the migration of NSCLC A549 and NCI-H460 cells and reduced the expression of epithelial-to-mesenchymal transition (EMT)-related molecules, including neuro-cadherin (N-cadherin), matrix metalloproteinase 2 (MMP2), and the zinc finger transcription factor Snail, but increased epithelial cadherin (E-cadherin) expression. Furthermore, metformin increased GDF15 and its upstream transcription factors activated transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP) expressions and increased AMP-activated protein kinase (AMPK) phosphorylation in NSCLC cells. GDF15 siRNA partially reverses the inhibitory effect of metformin on NSCLC cell migration. Moreover, metformin-induced increases in GDF15, CHOP, and ATF4 expression and the inhibition of migration were partially reversed by treatment with Compound C, a specific AMPK inhibitor. Meanwhile, metformin significantly inhibited NCI-H460 xenograft tumor growth in nude mice, increased GDF15 expression, and regulated EMT- and migration-related protein expression in xenograft tumors. In conclusion, our results provide novel insights into revealing that GDF15 can serve as a potential molecular target of metformin owing to its anti-cancer effect in NSCLC, which is mediated by AMPK activation.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"985 \",\"pages\":\"Article 177127\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299924008173\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299924008173","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Metformin inhibits migration and epithelial-to-mesenchymal transition in non-small cell lung cancer cells through AMPK-mediated GDF15 induction
The growth differentiation factor 15 (GDF15) may serve as a biomarker of metformin, which mediates the bodyweight lowering effect of metformin. However, whether GDF15 also serves as a molecular target of metformin to inhibit carcinogenesis remains largely unknown. This study examined the role and molecular mechanisms of GDF15 in the anticancer effects of metformin in non-small cell lung cancer (NSCLC) cells, which has never been reported before. We found that metformin significantly inhibited the migration of NSCLC A549 and NCI-H460 cells and reduced the expression of epithelial-to-mesenchymal transition (EMT)-related molecules, including neuro-cadherin (N-cadherin), matrix metalloproteinase 2 (MMP2), and the zinc finger transcription factor Snail, but increased epithelial cadherin (E-cadherin) expression. Furthermore, metformin increased GDF15 and its upstream transcription factors activated transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP) expressions and increased AMP-activated protein kinase (AMPK) phosphorylation in NSCLC cells. GDF15 siRNA partially reverses the inhibitory effect of metformin on NSCLC cell migration. Moreover, metformin-induced increases in GDF15, CHOP, and ATF4 expression and the inhibition of migration were partially reversed by treatment with Compound C, a specific AMPK inhibitor. Meanwhile, metformin significantly inhibited NCI-H460 xenograft tumor growth in nude mice, increased GDF15 expression, and regulated EMT- and migration-related protein expression in xenograft tumors. In conclusion, our results provide novel insights into revealing that GDF15 can serve as a potential molecular target of metformin owing to its anti-cancer effect in NSCLC, which is mediated by AMPK activation.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.