Marleen C Tjepkema-Cloostermans, Martijn R Tannemaat, Luuk Wieske, Anne-Fleur van Rootselaar, Bas C Stunnenberg, Hanneke M Keijzer, Johannes H T M Koelman, Selma C Tromp, Ioana Dunca, Baukje J van der Star, Myrthe E de Koning, Michel J A M van Putten
{"title":"利用深度神经网络对发作间期放电进行专家级检测。","authors":"Marleen C Tjepkema-Cloostermans, Martijn R Tannemaat, Luuk Wieske, Anne-Fleur van Rootselaar, Bas C Stunnenberg, Hanneke M Keijzer, Johannes H T M Koelman, Selma C Tromp, Ioana Dunca, Baukje J van der Star, Myrthe E de Koning, Michel J A M van Putten","doi":"10.1111/epi.18164","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Deep learning methods have shown potential in automating the detection of interictal epileptiform discharges (IEDs) in electroencephalography (EEG). We compared IED detection using our previously trained deep neural network with a group of experts to assess its potential applicability.</p><p><strong>Methods: </strong>First, we performed clinical validation on an internal data set. Seven experts reviewed all EEG studies. Performance agreement between experts and the network was compared at both the EEG and IED levels. All EEG recordings were also processed with Persyst. Subsequently, we performed external validation, with data from four centers, using a hybrid approach, where detections by the deep neural network were reviewed by an expert. In case of disagreement with the original report, the EEG recording was annotated independently by five experts.</p><p><strong>Results: </strong>For internal validation we included 22 EEG studies with IEDs and 28 EEG studies from controls. At the EEG level, our network showed performance similar to that of the experts. For individual IED detection, the sensitivities between experts ranged from 20.7%-86.4%, whereas the sensitivity of our network was 82.5% (confidence interval [CI]: 77.7%-87.4%) at 99% specificity and a false detection rate (FDR) of <.2/min, outperforming Persyst, with 64.6% sensitivity (CI: 61.4%-67.9%) at 98% specificity. External validation in 174 EEG studies demonstrated that all 85 EEG recordings classified as normal in the original report were classified correctly, with an FDR of .10/min. Of the 89 EEG studies with IEDs according to the report, 56 were correctly classified (Cohen's κ = .62). Visual analysis of the remaining 33 EEG recordings showed high interobserver variability among the five experts (Fleiss' κ = .13).</p><p><strong>Significance: </strong>Our deep neural network detects IEDs on par with clinical experts. The external validation in a hybrid approach showed substantial agreement with the original report. Disagreement was due mainly to high interobserver variability. Our deep neural network may support visual EEG analysis and assist in diagnostics, particularly when human resources are limited.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expert level of detection of interictal discharges with a deep neural network.\",\"authors\":\"Marleen C Tjepkema-Cloostermans, Martijn R Tannemaat, Luuk Wieske, Anne-Fleur van Rootselaar, Bas C Stunnenberg, Hanneke M Keijzer, Johannes H T M Koelman, Selma C Tromp, Ioana Dunca, Baukje J van der Star, Myrthe E de Koning, Michel J A M van Putten\",\"doi\":\"10.1111/epi.18164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Deep learning methods have shown potential in automating the detection of interictal epileptiform discharges (IEDs) in electroencephalography (EEG). We compared IED detection using our previously trained deep neural network with a group of experts to assess its potential applicability.</p><p><strong>Methods: </strong>First, we performed clinical validation on an internal data set. Seven experts reviewed all EEG studies. Performance agreement between experts and the network was compared at both the EEG and IED levels. All EEG recordings were also processed with Persyst. Subsequently, we performed external validation, with data from four centers, using a hybrid approach, where detections by the deep neural network were reviewed by an expert. In case of disagreement with the original report, the EEG recording was annotated independently by five experts.</p><p><strong>Results: </strong>For internal validation we included 22 EEG studies with IEDs and 28 EEG studies from controls. At the EEG level, our network showed performance similar to that of the experts. For individual IED detection, the sensitivities between experts ranged from 20.7%-86.4%, whereas the sensitivity of our network was 82.5% (confidence interval [CI]: 77.7%-87.4%) at 99% specificity and a false detection rate (FDR) of <.2/min, outperforming Persyst, with 64.6% sensitivity (CI: 61.4%-67.9%) at 98% specificity. External validation in 174 EEG studies demonstrated that all 85 EEG recordings classified as normal in the original report were classified correctly, with an FDR of .10/min. Of the 89 EEG studies with IEDs according to the report, 56 were correctly classified (Cohen's κ = .62). Visual analysis of the remaining 33 EEG recordings showed high interobserver variability among the five experts (Fleiss' κ = .13).</p><p><strong>Significance: </strong>Our deep neural network detects IEDs on par with clinical experts. The external validation in a hybrid approach showed substantial agreement with the original report. Disagreement was due mainly to high interobserver variability. Our deep neural network may support visual EEG analysis and assist in diagnostics, particularly when human resources are limited.</p>\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/epi.18164\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18164","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Expert level of detection of interictal discharges with a deep neural network.
Objective: Deep learning methods have shown potential in automating the detection of interictal epileptiform discharges (IEDs) in electroencephalography (EEG). We compared IED detection using our previously trained deep neural network with a group of experts to assess its potential applicability.
Methods: First, we performed clinical validation on an internal data set. Seven experts reviewed all EEG studies. Performance agreement between experts and the network was compared at both the EEG and IED levels. All EEG recordings were also processed with Persyst. Subsequently, we performed external validation, with data from four centers, using a hybrid approach, where detections by the deep neural network were reviewed by an expert. In case of disagreement with the original report, the EEG recording was annotated independently by five experts.
Results: For internal validation we included 22 EEG studies with IEDs and 28 EEG studies from controls. At the EEG level, our network showed performance similar to that of the experts. For individual IED detection, the sensitivities between experts ranged from 20.7%-86.4%, whereas the sensitivity of our network was 82.5% (confidence interval [CI]: 77.7%-87.4%) at 99% specificity and a false detection rate (FDR) of <.2/min, outperforming Persyst, with 64.6% sensitivity (CI: 61.4%-67.9%) at 98% specificity. External validation in 174 EEG studies demonstrated that all 85 EEG recordings classified as normal in the original report were classified correctly, with an FDR of .10/min. Of the 89 EEG studies with IEDs according to the report, 56 were correctly classified (Cohen's κ = .62). Visual analysis of the remaining 33 EEG recordings showed high interobserver variability among the five experts (Fleiss' κ = .13).
Significance: Our deep neural network detects IEDs on par with clinical experts. The external validation in a hybrid approach showed substantial agreement with the original report. Disagreement was due mainly to high interobserver variability. Our deep neural network may support visual EEG analysis and assist in diagnostics, particularly when human resources are limited.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.