生物化学和遗传学正在结合在一起,以提高我们对基因型与表型关系的理解。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Judith Notbohm , Tina Perica
{"title":"生物化学和遗传学正在结合在一起,以提高我们对基因型与表型关系的理解。","authors":"Judith Notbohm ,&nbsp;Tina Perica","doi":"10.1016/j.sbi.2024.102952","DOIUrl":null,"url":null,"abstract":"<div><div>Since genome sequencing became accessible, determining how specific differences in genotypes lead to complex phenotypes such as disease has become one of the key goals in biomedicine. Predicting effects of sequence variants on cellular or organismal phenotype faces several challenges. First, variants simultaneously affect multiple protein properties and predicting their combined effect is complex. Second, effects of changes in a single protein propagate through the cellular network, which we only partially understand. In this review, we emphasize the importance of both biochemistry and genetics in addressing these challenges. Moreover, we highlight work that blurs the distinction between biochemistry and genetics fields to provide new insights into the genotype-to-phenotype relationships.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102952"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemistry and genetics are coming together to improve our understanding of genotype to phenotype relationships\",\"authors\":\"Judith Notbohm ,&nbsp;Tina Perica\",\"doi\":\"10.1016/j.sbi.2024.102952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since genome sequencing became accessible, determining how specific differences in genotypes lead to complex phenotypes such as disease has become one of the key goals in biomedicine. Predicting effects of sequence variants on cellular or organismal phenotype faces several challenges. First, variants simultaneously affect multiple protein properties and predicting their combined effect is complex. Second, effects of changes in a single protein propagate through the cellular network, which we only partially understand. In this review, we emphasize the importance of both biochemistry and genetics in addressing these challenges. Moreover, we highlight work that blurs the distinction between biochemistry and genetics fields to provide new insights into the genotype-to-phenotype relationships.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"89 \",\"pages\":\"Article 102952\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24001799\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001799","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自基因组测序开始普及以来,确定基因型的具体差异如何导致疾病等复杂表型已成为生物医学的关键目标之一。预测序列变异对细胞或生物体表型的影响面临着几个挑战。首先,变异同时影响多种蛋白质特性,预测它们的综合效应非常复杂。其次,单个蛋白质变化的影响会通过细胞网络传播,而我们对细胞网络只有部分了解。在这篇综述中,我们强调了生物化学和遗传学在应对这些挑战中的重要性。此外,我们还着重介绍了一些模糊生物化学和遗传学领域界限的工作,这些工作为我们提供了基因型与表型关系的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochemistry and genetics are coming together to improve our understanding of genotype to phenotype relationships
Since genome sequencing became accessible, determining how specific differences in genotypes lead to complex phenotypes such as disease has become one of the key goals in biomedicine. Predicting effects of sequence variants on cellular or organismal phenotype faces several challenges. First, variants simultaneously affect multiple protein properties and predicting their combined effect is complex. Second, effects of changes in a single protein propagate through the cellular network, which we only partially understand. In this review, we emphasize the importance of both biochemistry and genetics in addressing these challenges. Moreover, we highlight work that blurs the distinction between biochemistry and genetics fields to provide new insights into the genotype-to-phenotype relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信