Pau Romero , Miguel Lozano , Lydia Dux-Santoy , Andrea Guala , Gisela Teixidó-Turà , Rafael Sebastián , Ignacio García-Fernández
{"title":"超越根部:用于诊断综合遗传性胸主动脉疾病的几何特征。","authors":"Pau Romero , Miguel Lozano , Lydia Dux-Santoy , Andrea Guala , Gisela Teixidó-Turà , Rafael Sebastián , Ignacio García-Fernández","doi":"10.1016/j.compbiomed.2024.109176","DOIUrl":null,"url":null,"abstract":"<div><div>Syndromic heritable thoracic aortic diseases (sHTAD), such as Marfan (MFS) or Loeys–Dietz (LDS) syndromes, involve high risk of life threatening aortic events. Diagnosis of syndromic features alone is difficult, and negative genetic tests do not necessarily exclude a genetic or hereditary condition. Periodic 3D imaging of the aorta is recommended in patients with aortic disease. Thus, an imaging-based approach aimed at identifying unique features of aortic geometry can be highly effective for diagnosing sHTAD and assessing risk. In this study, we present a method that can help identify the manifestations of sHTAD by focusing on the entire geometry of the thoracic aorta, rather than only using measurements of dilation of the aortic root. We analyze the geometric phenotype of 97 patients with genetically confirmed sHTAD (79 MF and 18 LDS) and of 45 healthy volunteers, using 3D aorta meshes obtained from phase contrast-enhanced magnetic resonance angiograms computed from 4D flow cardiac magnetic resonance. We build a geometric encoding of the aorta, based on a vessel coordinate system, and use several mathematical models to discriminate between controls and patients with sHTAD: a baseline scenario, based on aortic root dimensions only, a descriptor typically used in sHTAD patients; a low dimensional scenario, with a reduce encoding using principal component analysis; and a high-dimensional scenario, which included the full coefficient representation for geometry encoding, aiming to capture finer geometric details. The results indicate that considering the anatomy of the whole thoracic aorta can improve predictive ability. We achieve precision and sensitivity values over 0.8, with a specificity of over 70% in all the models used, while a single value classifiers (based only on aortic root diameter) demonstrated a trade-off between sensitivity and specificity. Using the mathematical properties of the vessel coordinate system representation, feature importance is mapped onto a set of anatomical traits that are used by the models to do the classification, thus providing interpretability of the results. This analysis indicates that in addition to the diameter of the aortic root, aortic elongation and a narrowing of the descending thoracic aorta may be markers of positive sHTAD.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"182 ","pages":"Article 109176"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the root: Geometric characterization for the diagnosis of syndromic heritable thoracic aortic diseases\",\"authors\":\"Pau Romero , Miguel Lozano , Lydia Dux-Santoy , Andrea Guala , Gisela Teixidó-Turà , Rafael Sebastián , Ignacio García-Fernández\",\"doi\":\"10.1016/j.compbiomed.2024.109176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Syndromic heritable thoracic aortic diseases (sHTAD), such as Marfan (MFS) or Loeys–Dietz (LDS) syndromes, involve high risk of life threatening aortic events. Diagnosis of syndromic features alone is difficult, and negative genetic tests do not necessarily exclude a genetic or hereditary condition. Periodic 3D imaging of the aorta is recommended in patients with aortic disease. Thus, an imaging-based approach aimed at identifying unique features of aortic geometry can be highly effective for diagnosing sHTAD and assessing risk. In this study, we present a method that can help identify the manifestations of sHTAD by focusing on the entire geometry of the thoracic aorta, rather than only using measurements of dilation of the aortic root. We analyze the geometric phenotype of 97 patients with genetically confirmed sHTAD (79 MF and 18 LDS) and of 45 healthy volunteers, using 3D aorta meshes obtained from phase contrast-enhanced magnetic resonance angiograms computed from 4D flow cardiac magnetic resonance. We build a geometric encoding of the aorta, based on a vessel coordinate system, and use several mathematical models to discriminate between controls and patients with sHTAD: a baseline scenario, based on aortic root dimensions only, a descriptor typically used in sHTAD patients; a low dimensional scenario, with a reduce encoding using principal component analysis; and a high-dimensional scenario, which included the full coefficient representation for geometry encoding, aiming to capture finer geometric details. The results indicate that considering the anatomy of the whole thoracic aorta can improve predictive ability. We achieve precision and sensitivity values over 0.8, with a specificity of over 70% in all the models used, while a single value classifiers (based only on aortic root diameter) demonstrated a trade-off between sensitivity and specificity. Using the mathematical properties of the vessel coordinate system representation, feature importance is mapped onto a set of anatomical traits that are used by the models to do the classification, thus providing interpretability of the results. This analysis indicates that in addition to the diameter of the aortic root, aortic elongation and a narrowing of the descending thoracic aorta may be markers of positive sHTAD.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"182 \",\"pages\":\"Article 109176\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524012617\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524012617","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Beyond the root: Geometric characterization for the diagnosis of syndromic heritable thoracic aortic diseases
Syndromic heritable thoracic aortic diseases (sHTAD), such as Marfan (MFS) or Loeys–Dietz (LDS) syndromes, involve high risk of life threatening aortic events. Diagnosis of syndromic features alone is difficult, and negative genetic tests do not necessarily exclude a genetic or hereditary condition. Periodic 3D imaging of the aorta is recommended in patients with aortic disease. Thus, an imaging-based approach aimed at identifying unique features of aortic geometry can be highly effective for diagnosing sHTAD and assessing risk. In this study, we present a method that can help identify the manifestations of sHTAD by focusing on the entire geometry of the thoracic aorta, rather than only using measurements of dilation of the aortic root. We analyze the geometric phenotype of 97 patients with genetically confirmed sHTAD (79 MF and 18 LDS) and of 45 healthy volunteers, using 3D aorta meshes obtained from phase contrast-enhanced magnetic resonance angiograms computed from 4D flow cardiac magnetic resonance. We build a geometric encoding of the aorta, based on a vessel coordinate system, and use several mathematical models to discriminate between controls and patients with sHTAD: a baseline scenario, based on aortic root dimensions only, a descriptor typically used in sHTAD patients; a low dimensional scenario, with a reduce encoding using principal component analysis; and a high-dimensional scenario, which included the full coefficient representation for geometry encoding, aiming to capture finer geometric details. The results indicate that considering the anatomy of the whole thoracic aorta can improve predictive ability. We achieve precision and sensitivity values over 0.8, with a specificity of over 70% in all the models used, while a single value classifiers (based only on aortic root diameter) demonstrated a trade-off between sensitivity and specificity. Using the mathematical properties of the vessel coordinate system representation, feature importance is mapped onto a set of anatomical traits that are used by the models to do the classification, thus providing interpretability of the results. This analysis indicates that in addition to the diameter of the aortic root, aortic elongation and a narrowing of the descending thoracic aorta may be markers of positive sHTAD.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.