利用同步研究对有早产危险的孕妇进行电子超声波检查,以判别其是否即将分娩。

IF 7 2区 医学 Q1 BIOLOGY
Wanting Li , Yongxiu Yang , Guangfei Li , Félix Nieto-del-Amor , Gema Prats-Boluda , Javier Garcia-Casado , Yiyao Ye-Lin , Dongmei Hao
{"title":"利用同步研究对有早产危险的孕妇进行电子超声波检查,以判别其是否即将分娩。","authors":"Wanting Li ,&nbsp;Yongxiu Yang ,&nbsp;Guangfei Li ,&nbsp;Félix Nieto-del-Amor ,&nbsp;Gema Prats-Boluda ,&nbsp;Javier Garcia-Casado ,&nbsp;Yiyao Ye-Lin ,&nbsp;Dongmei Hao","doi":"10.1016/j.compbiomed.2024.109417","DOIUrl":null,"url":null,"abstract":"<div><div>Preterm birth a common and severe pregnancy complications, causing significant health, development, and economic problems. Accurate diagnosis of imminent labor for women with threatened preterm labor (TPL) is crucial. Electrohysterography (EHG), which represents uterine myometrial electrical activity, is a potential tool for predicting preterm birth. Increased cell synchronization is fundamental to generating high-intensity and coordinated uterine myometrial electrical activity as labor approaches. The present work aimed to evaluate the synchronization measures from multichannel EHG signals to predict labor in less than 24 h (time to delivery, TTD &lt;24 h vs. TTD≥24 h), and between imminent labor (TTD &lt;1 week) and non-imminent labor (TTD≥1 week) in women with TPL. We computed three synchronization measures: the imaginary component of coherence, phase lag index, and weighted phase lag index (wPLI) within three specific frequency bandwidths (fast wave low (FWL): 0.1–0.34 Hz, fast wave high (FWH): 0.34–1 Hz, and whole bandwidth: 0.1–1 Hz) from 115 pregnant women (26–41 weeks of gestation). Our results revealed that multichannel EHG synchronization measures significantly increased closer to delivery (labor &gt; non-labor, imminent &gt; non-imminent). Indeed, wPLI in the FWH bandwidth exhibited a positive correlation with gestational age (<em>p</em> &lt; 0.001,correlation coefficient = 0.35) and an inverse relationship with time to delivery (<em>p</em> &lt; 0.001,correlation coefficient = −0.33). wPLI allows for better distinguishing imminent from non-imminent in women with TPL, especially for those electrode pairs in the vertical direction, which has been reported as the predominant direction of uterine activity propagation. The three synchronization measures computed in FWL and FWH bandwidth provided complementary information for predicting labor in less than 24 h and also imminent labor in women with TPL, achieving an F1-score of 93 % (84.2–93 %) and 99.5 % (85.2–99.5 %) respectively. Our results suggest that EHG synchronization analysis constitutes a new sensitive metrics to discriminate imminent labor which can be potentially used for improving preterm birth prediction and understand uterine electrical activity dynamics.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109417"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization study of electrohysterography for discrimination of imminent delivery in pregnant women with threatened preterm labor\",\"authors\":\"Wanting Li ,&nbsp;Yongxiu Yang ,&nbsp;Guangfei Li ,&nbsp;Félix Nieto-del-Amor ,&nbsp;Gema Prats-Boluda ,&nbsp;Javier Garcia-Casado ,&nbsp;Yiyao Ye-Lin ,&nbsp;Dongmei Hao\",\"doi\":\"10.1016/j.compbiomed.2024.109417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Preterm birth a common and severe pregnancy complications, causing significant health, development, and economic problems. Accurate diagnosis of imminent labor for women with threatened preterm labor (TPL) is crucial. Electrohysterography (EHG), which represents uterine myometrial electrical activity, is a potential tool for predicting preterm birth. Increased cell synchronization is fundamental to generating high-intensity and coordinated uterine myometrial electrical activity as labor approaches. The present work aimed to evaluate the synchronization measures from multichannel EHG signals to predict labor in less than 24 h (time to delivery, TTD &lt;24 h vs. TTD≥24 h), and between imminent labor (TTD &lt;1 week) and non-imminent labor (TTD≥1 week) in women with TPL. We computed three synchronization measures: the imaginary component of coherence, phase lag index, and weighted phase lag index (wPLI) within three specific frequency bandwidths (fast wave low (FWL): 0.1–0.34 Hz, fast wave high (FWH): 0.34–1 Hz, and whole bandwidth: 0.1–1 Hz) from 115 pregnant women (26–41 weeks of gestation). Our results revealed that multichannel EHG synchronization measures significantly increased closer to delivery (labor &gt; non-labor, imminent &gt; non-imminent). Indeed, wPLI in the FWH bandwidth exhibited a positive correlation with gestational age (<em>p</em> &lt; 0.001,correlation coefficient = 0.35) and an inverse relationship with time to delivery (<em>p</em> &lt; 0.001,correlation coefficient = −0.33). wPLI allows for better distinguishing imminent from non-imminent in women with TPL, especially for those electrode pairs in the vertical direction, which has been reported as the predominant direction of uterine activity propagation. The three synchronization measures computed in FWL and FWH bandwidth provided complementary information for predicting labor in less than 24 h and also imminent labor in women with TPL, achieving an F1-score of 93 % (84.2–93 %) and 99.5 % (85.2–99.5 %) respectively. Our results suggest that EHG synchronization analysis constitutes a new sensitive metrics to discriminate imminent labor which can be potentially used for improving preterm birth prediction and understand uterine electrical activity dynamics.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109417\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524015026\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524015026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

早产是一种常见的严重妊娠并发症,会造成严重的健康、发育和经济问题。对有早产威胁(TPL)的妇女进行准确的临产诊断至关重要。宫体电图(EHG)代表子宫肌电活动,是预测早产的潜在工具。临产时,细胞同步性的提高是产生高强度和协调的子宫肌电活动的基础。本研究旨在评估多通道 EHG 信号的同步测量,以预测 24 小时内的分娩(分娩时间、TTD 非分娩、临产 > 非临产)。事实上,FWH 带宽的 wPLI 与胎龄呈正相关(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization study of electrohysterography for discrimination of imminent delivery in pregnant women with threatened preterm labor
Preterm birth a common and severe pregnancy complications, causing significant health, development, and economic problems. Accurate diagnosis of imminent labor for women with threatened preterm labor (TPL) is crucial. Electrohysterography (EHG), which represents uterine myometrial electrical activity, is a potential tool for predicting preterm birth. Increased cell synchronization is fundamental to generating high-intensity and coordinated uterine myometrial electrical activity as labor approaches. The present work aimed to evaluate the synchronization measures from multichannel EHG signals to predict labor in less than 24 h (time to delivery, TTD <24 h vs. TTD≥24 h), and between imminent labor (TTD <1 week) and non-imminent labor (TTD≥1 week) in women with TPL. We computed three synchronization measures: the imaginary component of coherence, phase lag index, and weighted phase lag index (wPLI) within three specific frequency bandwidths (fast wave low (FWL): 0.1–0.34 Hz, fast wave high (FWH): 0.34–1 Hz, and whole bandwidth: 0.1–1 Hz) from 115 pregnant women (26–41 weeks of gestation). Our results revealed that multichannel EHG synchronization measures significantly increased closer to delivery (labor > non-labor, imminent > non-imminent). Indeed, wPLI in the FWH bandwidth exhibited a positive correlation with gestational age (p < 0.001,correlation coefficient = 0.35) and an inverse relationship with time to delivery (p < 0.001,correlation coefficient = −0.33). wPLI allows for better distinguishing imminent from non-imminent in women with TPL, especially for those electrode pairs in the vertical direction, which has been reported as the predominant direction of uterine activity propagation. The three synchronization measures computed in FWL and FWH bandwidth provided complementary information for predicting labor in less than 24 h and also imminent labor in women with TPL, achieving an F1-score of 93 % (84.2–93 %) and 99.5 % (85.2–99.5 %) respectively. Our results suggest that EHG synchronization analysis constitutes a new sensitive metrics to discriminate imminent labor which can be potentially used for improving preterm birth prediction and understand uterine electrical activity dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信