Wei-Ju Chen, Yi-Ya Chao, Wei-Kai Huang, Wei-Fang Chang, Chii-Ruey Tzeng, Chi-Hsuan Chuang, Pei-Lun Lai, Scott C Schuyler, Long-Yuan Li, Jean Lu
{"title":"鉴定特纳综合征人类 iPSC 衍生颗粒细胞模型中的凋亡素/APJ 信号失调。","authors":"Wei-Ju Chen, Yi-Ya Chao, Wei-Kai Huang, Wei-Fang Chang, Chii-Ruey Tzeng, Chi-Hsuan Chuang, Pei-Lun Lai, Scott C Schuyler, Long-Yuan Li, Jean Lu","doi":"10.1038/s41420-024-02231-9","DOIUrl":null,"url":null,"abstract":"<p><p>The interaction between germ cells and somatic cells in the ovaries plays a crucial role in establishing the follicle reserve in mammals. Turner syndrome (TS) predominantly affects females who have a partial or complete loss of one X chromosome. Our understanding of the role that granulosa cells (GCs) play in TS disease progression and pathogenesis remains limited. In this study, we achieved GC differentiation efficiency of up to 80% from iPSCs. When attempting to replicate the differentiation process of embryonic granulosa cells, we observed the downregulation of specific genes-GATA4, FOXL2, AMHR2, CYP19A1, and FSH-in Turner syndrome-derived granulosa cells (TS-GCs). Additionally, we identified dysregulation of the cell cycle in TS-GCs. To uncover the endogenous defects in TS-GCs, we compared global transcriptome patterns between iPSC-derived granulosa cells from healthy individuals and those with Turner syndrome. The apelin/APJ pathway exhibited differential signaling between the healthy and TS groups. Supplementation with apelin ligands and activation of apelin/APJ downstream signaling via Akt/PKB restored cell cycle progression and marker gene expression. We hypothesize that during early embryonic development, failures in apelin/APJ signaling in GCs of Turner syndrome patients lead to abnormalities in ovarian development, ultimately resulting in early oocyte loss and infertility.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"468"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564969/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of apelin/APJ signaling dysregulation in a human iPSC-derived granulosa cell model of Turner syndrome.\",\"authors\":\"Wei-Ju Chen, Yi-Ya Chao, Wei-Kai Huang, Wei-Fang Chang, Chii-Ruey Tzeng, Chi-Hsuan Chuang, Pei-Lun Lai, Scott C Schuyler, Long-Yuan Li, Jean Lu\",\"doi\":\"10.1038/s41420-024-02231-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interaction between germ cells and somatic cells in the ovaries plays a crucial role in establishing the follicle reserve in mammals. Turner syndrome (TS) predominantly affects females who have a partial or complete loss of one X chromosome. Our understanding of the role that granulosa cells (GCs) play in TS disease progression and pathogenesis remains limited. In this study, we achieved GC differentiation efficiency of up to 80% from iPSCs. When attempting to replicate the differentiation process of embryonic granulosa cells, we observed the downregulation of specific genes-GATA4, FOXL2, AMHR2, CYP19A1, and FSH-in Turner syndrome-derived granulosa cells (TS-GCs). Additionally, we identified dysregulation of the cell cycle in TS-GCs. To uncover the endogenous defects in TS-GCs, we compared global transcriptome patterns between iPSC-derived granulosa cells from healthy individuals and those with Turner syndrome. The apelin/APJ pathway exhibited differential signaling between the healthy and TS groups. Supplementation with apelin ligands and activation of apelin/APJ downstream signaling via Akt/PKB restored cell cycle progression and marker gene expression. We hypothesize that during early embryonic development, failures in apelin/APJ signaling in GCs of Turner syndrome patients lead to abnormalities in ovarian development, ultimately resulting in early oocyte loss and infertility.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"10 1\",\"pages\":\"468\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02231-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02231-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Identification of apelin/APJ signaling dysregulation in a human iPSC-derived granulosa cell model of Turner syndrome.
The interaction between germ cells and somatic cells in the ovaries plays a crucial role in establishing the follicle reserve in mammals. Turner syndrome (TS) predominantly affects females who have a partial or complete loss of one X chromosome. Our understanding of the role that granulosa cells (GCs) play in TS disease progression and pathogenesis remains limited. In this study, we achieved GC differentiation efficiency of up to 80% from iPSCs. When attempting to replicate the differentiation process of embryonic granulosa cells, we observed the downregulation of specific genes-GATA4, FOXL2, AMHR2, CYP19A1, and FSH-in Turner syndrome-derived granulosa cells (TS-GCs). Additionally, we identified dysregulation of the cell cycle in TS-GCs. To uncover the endogenous defects in TS-GCs, we compared global transcriptome patterns between iPSC-derived granulosa cells from healthy individuals and those with Turner syndrome. The apelin/APJ pathway exhibited differential signaling between the healthy and TS groups. Supplementation with apelin ligands and activation of apelin/APJ downstream signaling via Akt/PKB restored cell cycle progression and marker gene expression. We hypothesize that during early embryonic development, failures in apelin/APJ signaling in GCs of Turner syndrome patients lead to abnormalities in ovarian development, ultimately resulting in early oocyte loss and infertility.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.