Yuanhang Wang, Kuan Shen, Quan Cheng, Xinyi Zhou, Kanghui Liu, Jian Xiao, Li Hu
{"title":"长非编码 RNA ELFN1-AS1 通过与 TAOK1 相互作用抑制 Hippo 信号通路,从而促进胃癌的生长和转移。","authors":"Yuanhang Wang, Kuan Shen, Quan Cheng, Xinyi Zhou, Kanghui Liu, Jian Xiao, Li Hu","doi":"10.1038/s41420-024-02235-5","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) is a common digestive malignancy that causes numerous cancer-related deaths. Long noncoding RNAs (lncRNAs) play a crucial role in the development of various tumors, including GC. In this study, we revealed that ELFN1-AS1, a lncRNA with aberrantly high expression, contributes to the proliferation and metastasis of GC. Mechanically, ELFN1-AS1 plays an oncogenic role by binding to the protein kinase domain of thousand and one amino acid protein kinase (TAOK1), a tumor suppressor in GC, and disrupting the TAOK1-STK3 interaction, leading to decreased STK3 phosphorylation. This decrease is accompanied by attenuation of the Hippo kinase cascade, resulting in reduced YAP1 phosphorylation, a crucial effector of the Hippo signaling pathway. Subsequently, the reduced YAP1 phosphorylation promotes its nuclear translocation, thereby enhancing the expression of MYC, a downstream target of the pathway and well-known oncogene. Taken together, the ELFN1-AS1/TAOK1/STK3/YAP1 axis may promote GC progression and is a promising target for GC treatment.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"465"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555383/pdf/","citationCount":"0","resultStr":"{\"title\":\"The long noncoding RNA ELFN1-AS1 promotes gastric cancer growth and metastasis by interacting with TAOK1 to inhibit the Hippo signaling pathway.\",\"authors\":\"Yuanhang Wang, Kuan Shen, Quan Cheng, Xinyi Zhou, Kanghui Liu, Jian Xiao, Li Hu\",\"doi\":\"10.1038/s41420-024-02235-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer (GC) is a common digestive malignancy that causes numerous cancer-related deaths. Long noncoding RNAs (lncRNAs) play a crucial role in the development of various tumors, including GC. In this study, we revealed that ELFN1-AS1, a lncRNA with aberrantly high expression, contributes to the proliferation and metastasis of GC. Mechanically, ELFN1-AS1 plays an oncogenic role by binding to the protein kinase domain of thousand and one amino acid protein kinase (TAOK1), a tumor suppressor in GC, and disrupting the TAOK1-STK3 interaction, leading to decreased STK3 phosphorylation. This decrease is accompanied by attenuation of the Hippo kinase cascade, resulting in reduced YAP1 phosphorylation, a crucial effector of the Hippo signaling pathway. Subsequently, the reduced YAP1 phosphorylation promotes its nuclear translocation, thereby enhancing the expression of MYC, a downstream target of the pathway and well-known oncogene. Taken together, the ELFN1-AS1/TAOK1/STK3/YAP1 axis may promote GC progression and is a promising target for GC treatment.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"10 1\",\"pages\":\"465\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555383/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02235-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02235-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The long noncoding RNA ELFN1-AS1 promotes gastric cancer growth and metastasis by interacting with TAOK1 to inhibit the Hippo signaling pathway.
Gastric cancer (GC) is a common digestive malignancy that causes numerous cancer-related deaths. Long noncoding RNAs (lncRNAs) play a crucial role in the development of various tumors, including GC. In this study, we revealed that ELFN1-AS1, a lncRNA with aberrantly high expression, contributes to the proliferation and metastasis of GC. Mechanically, ELFN1-AS1 plays an oncogenic role by binding to the protein kinase domain of thousand and one amino acid protein kinase (TAOK1), a tumor suppressor in GC, and disrupting the TAOK1-STK3 interaction, leading to decreased STK3 phosphorylation. This decrease is accompanied by attenuation of the Hippo kinase cascade, resulting in reduced YAP1 phosphorylation, a crucial effector of the Hippo signaling pathway. Subsequently, the reduced YAP1 phosphorylation promotes its nuclear translocation, thereby enhancing the expression of MYC, a downstream target of the pathway and well-known oncogene. Taken together, the ELFN1-AS1/TAOK1/STK3/YAP1 axis may promote GC progression and is a promising target for GC treatment.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.