异丙肾上腺素抑制组蛋白去甲基化酶 LSD1 引发心肌肥大

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Lili Wu, Bo Yang, Yingze Sun, Guanwei Fan, Lina Ma, Ying Ma, Xianjia Xiong, Hui Zhou, Huiping Wang, Ling Zhang, Bing Yang
{"title":"异丙肾上腺素抑制组蛋白去甲基化酶 LSD1 引发心肌肥大","authors":"Lili Wu, Bo Yang, Yingze Sun, Guanwei Fan, Lina Ma, Ying Ma, Xianjia Xiong, Hui Zhou, Huiping Wang, Ling Zhang, Bing Yang","doi":"10.1007/s12012-024-09937-3","DOIUrl":null,"url":null,"abstract":"<p><p>Histone demethylation in cardiac hypertrophy is poorly understood. This study aims to determine the role of the histone demethylase LSD1 in pathological cardiac hypertrophy. Both isoprenaline (ISO)-treated and transverse aortic constriction (TAC)-treated rats developed hypertrophic hearts. LSD1 was significantly decreased; the histone marks mono- and dimethyl H3K4 and H3K9 (H3K4me1/2 and H3K9me1/2) were significantly up-regulated in the hypertrophic heart tissue, as well as the expression of the ANP, α-HMC and MLV-2v genes. An LSD1 inhibitor, OG-L002 could also induce cardiac hypertrophy and enhance the induction of cardiac hypertrophy by ISO. Overexpressed LSD1 abolished ISO-induced cardiac hypertrophy and downregulated H3K4me1/2 and H3K9me1/2 expression. Overexpression of LSD1 also reduced the expression of ANP, α-HMC and MLV-2v. In addition, we have reported isoprenaline (ISO) as one of the histone demethylase LSD1 inhibitors. This was confirmed by molecular docking, molecular dynamic studies and a histone demethylation assay. The H3K4me1/2 expression increases with the incubation of ISO in HEK 293T and HELA cells. CaMKII could be significantly activated by the LSD1 inhibitor OG-L002 as well as by ISO in rats. In summary, we have identified a novel role for LSD1 in initiating and maintaining cardiac hypertrophy.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isoprenaline Inhibits Histone Demethylase LSD1 to Induce Cardiac Hypertrophy.\",\"authors\":\"Lili Wu, Bo Yang, Yingze Sun, Guanwei Fan, Lina Ma, Ying Ma, Xianjia Xiong, Hui Zhou, Huiping Wang, Ling Zhang, Bing Yang\",\"doi\":\"10.1007/s12012-024-09937-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone demethylation in cardiac hypertrophy is poorly understood. This study aims to determine the role of the histone demethylase LSD1 in pathological cardiac hypertrophy. Both isoprenaline (ISO)-treated and transverse aortic constriction (TAC)-treated rats developed hypertrophic hearts. LSD1 was significantly decreased; the histone marks mono- and dimethyl H3K4 and H3K9 (H3K4me1/2 and H3K9me1/2) were significantly up-regulated in the hypertrophic heart tissue, as well as the expression of the ANP, α-HMC and MLV-2v genes. An LSD1 inhibitor, OG-L002 could also induce cardiac hypertrophy and enhance the induction of cardiac hypertrophy by ISO. Overexpressed LSD1 abolished ISO-induced cardiac hypertrophy and downregulated H3K4me1/2 and H3K9me1/2 expression. Overexpression of LSD1 also reduced the expression of ANP, α-HMC and MLV-2v. In addition, we have reported isoprenaline (ISO) as one of the histone demethylase LSD1 inhibitors. This was confirmed by molecular docking, molecular dynamic studies and a histone demethylation assay. The H3K4me1/2 expression increases with the incubation of ISO in HEK 293T and HELA cells. CaMKII could be significantly activated by the LSD1 inhibitor OG-L002 as well as by ISO in rats. In summary, we have identified a novel role for LSD1 in initiating and maintaining cardiac hypertrophy.</p>\",\"PeriodicalId\":9570,\"journal\":{\"name\":\"Cardiovascular Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12012-024-09937-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-024-09937-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人们对组蛋白去甲基化在心肌肥大中的作用知之甚少。本研究旨在确定组蛋白去甲基化酶 LSD1 在病理性心肌肥厚中的作用。异丙肾上腺素(ISO)处理过的大鼠和横主动脉收缩(TAC)处理过的大鼠都出现了肥厚性心脏。肥大的心脏组织中,LSD1明显减少;组蛋白标记单二甲基H3K4和H3K9(H3K4me1/2和H3K9me1/2)明显上调,ANP、α-HMC和MLV-2v基因的表达也明显上调。LSD1抑制剂OG-L002也能诱导心脏肥大,并增强ISO对心脏肥大的诱导作用。过表达LSD1可消除ISO诱导的心肌肥大,并下调H3K4me1/2和H3K9me1/2的表达。过表达 LSD1 还会降低 ANP、α-HMC 和 MLV-2v 的表达。此外,我们还发现异丙肾上腺素(ISO)是组蛋白去甲基化酶 LSD1 的抑制剂之一。分子对接、分子动力学研究和组蛋白去甲基化试验证实了这一点。在 HEK 293T 和 HELA 细胞中,H3K4me1/2 的表达随着 ISO 的孵育而增加。在大鼠体内,LSD1 抑制剂 OG-L002 和 ISO 均可显著激活 CaMKII。总之,我们发现了 LSD1 在启动和维持心肌肥大中的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isoprenaline Inhibits Histone Demethylase LSD1 to Induce Cardiac Hypertrophy.

Histone demethylation in cardiac hypertrophy is poorly understood. This study aims to determine the role of the histone demethylase LSD1 in pathological cardiac hypertrophy. Both isoprenaline (ISO)-treated and transverse aortic constriction (TAC)-treated rats developed hypertrophic hearts. LSD1 was significantly decreased; the histone marks mono- and dimethyl H3K4 and H3K9 (H3K4me1/2 and H3K9me1/2) were significantly up-regulated in the hypertrophic heart tissue, as well as the expression of the ANP, α-HMC and MLV-2v genes. An LSD1 inhibitor, OG-L002 could also induce cardiac hypertrophy and enhance the induction of cardiac hypertrophy by ISO. Overexpressed LSD1 abolished ISO-induced cardiac hypertrophy and downregulated H3K4me1/2 and H3K9me1/2 expression. Overexpression of LSD1 also reduced the expression of ANP, α-HMC and MLV-2v. In addition, we have reported isoprenaline (ISO) as one of the histone demethylase LSD1 inhibitors. This was confirmed by molecular docking, molecular dynamic studies and a histone demethylation assay. The H3K4me1/2 expression increases with the incubation of ISO in HEK 293T and HELA cells. CaMKII could be significantly activated by the LSD1 inhibitor OG-L002 as well as by ISO in rats. In summary, we have identified a novel role for LSD1 in initiating and maintaining cardiac hypertrophy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信