Xixiang Deng , Jiayang Luo , Pan Huang , Peng He , Jiahao Li , Yanan Liu , Hualiang Xiao , Peng Feng
{"title":"MCRANet:基于 MTSL 的连接区域注意力网络,用于 H&E 染色图像中的 PD-L1 状态分割。","authors":"Xixiang Deng , Jiayang Luo , Pan Huang , Peng He , Jiahao Li , Yanan Liu , Hualiang Xiao , Peng Feng","doi":"10.1016/j.compbiomed.2024.109357","DOIUrl":null,"url":null,"abstract":"<div><div>The quantitative analysis of Programmed death-ligand 1 (PD-L1) via Immunohistochemical (IHC) plays a crucial role in guiding immunotherapy. However, IHC faces challenges, including high costs, time consumption and result variability. Conversely, Hematoxylin-Eosin (H&E) staining offers cost-effectiveness, speed, and stable results. Nonetheless, H&E staining, which solely visualizes cellular morphological features, lacks clinical applicability in detecting biomarker expressions like PD-L1. Substituting H&E staining for IHC in determining PD-L1 status is a clinically significant and challenging task. Motivated by above observations, we propose a Multi-Task supervised learning (MTSL)-based connectivity region attention network (MCRANet) for PD-L1 status segmentation in H&E stained images. To reduce interference from non-tumor areas, the MTSL-based region attention is proposed to enhances the network's capability to distinguish between tumor and non-tumor regions. Consequently, this augmentation further improves the network's segmentation efficacy for PD-L1 positive and negative regions. Furthermore, the PD-L1 expression regions demonstrate interconnection throughout the tissue section. Leveraging this topological prior knowledge, we integrate a connectivity modeling module (CM module) within the MTSL-based region attention module (MRA module) to enhance the precision of MTSL-based region attention localization. This integration further improves the structural similarity between the segmentation results and the ground truth. Extensive visual and quantitative results demonstrate that our supervised-learning-guided MRA module produces more interpretable attention and the introduced CM module provides accurate positional attention to the MRA module. Compared to other state-of-the-art networks, MCRANet exhibits superior segmentation performance with a dice similarity coefficient (DSC) of 79.6 % on the lung squamous cell carcinoma (LUSC) PD-L1 status dataset.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109357"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCRANet: MTSL-based connectivity region attention network for PD-L1 status segmentation in H&E stained images\",\"authors\":\"Xixiang Deng , Jiayang Luo , Pan Huang , Peng He , Jiahao Li , Yanan Liu , Hualiang Xiao , Peng Feng\",\"doi\":\"10.1016/j.compbiomed.2024.109357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quantitative analysis of Programmed death-ligand 1 (PD-L1) via Immunohistochemical (IHC) plays a crucial role in guiding immunotherapy. However, IHC faces challenges, including high costs, time consumption and result variability. Conversely, Hematoxylin-Eosin (H&E) staining offers cost-effectiveness, speed, and stable results. Nonetheless, H&E staining, which solely visualizes cellular morphological features, lacks clinical applicability in detecting biomarker expressions like PD-L1. Substituting H&E staining for IHC in determining PD-L1 status is a clinically significant and challenging task. Motivated by above observations, we propose a Multi-Task supervised learning (MTSL)-based connectivity region attention network (MCRANet) for PD-L1 status segmentation in H&E stained images. To reduce interference from non-tumor areas, the MTSL-based region attention is proposed to enhances the network's capability to distinguish between tumor and non-tumor regions. Consequently, this augmentation further improves the network's segmentation efficacy for PD-L1 positive and negative regions. Furthermore, the PD-L1 expression regions demonstrate interconnection throughout the tissue section. Leveraging this topological prior knowledge, we integrate a connectivity modeling module (CM module) within the MTSL-based region attention module (MRA module) to enhance the precision of MTSL-based region attention localization. This integration further improves the structural similarity between the segmentation results and the ground truth. Extensive visual and quantitative results demonstrate that our supervised-learning-guided MRA module produces more interpretable attention and the introduced CM module provides accurate positional attention to the MRA module. Compared to other state-of-the-art networks, MCRANet exhibits superior segmentation performance with a dice similarity coefficient (DSC) of 79.6 % on the lung squamous cell carcinoma (LUSC) PD-L1 status dataset.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109357\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524014422\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014422","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
MCRANet: MTSL-based connectivity region attention network for PD-L1 status segmentation in H&E stained images
The quantitative analysis of Programmed death-ligand 1 (PD-L1) via Immunohistochemical (IHC) plays a crucial role in guiding immunotherapy. However, IHC faces challenges, including high costs, time consumption and result variability. Conversely, Hematoxylin-Eosin (H&E) staining offers cost-effectiveness, speed, and stable results. Nonetheless, H&E staining, which solely visualizes cellular morphological features, lacks clinical applicability in detecting biomarker expressions like PD-L1. Substituting H&E staining for IHC in determining PD-L1 status is a clinically significant and challenging task. Motivated by above observations, we propose a Multi-Task supervised learning (MTSL)-based connectivity region attention network (MCRANet) for PD-L1 status segmentation in H&E stained images. To reduce interference from non-tumor areas, the MTSL-based region attention is proposed to enhances the network's capability to distinguish between tumor and non-tumor regions. Consequently, this augmentation further improves the network's segmentation efficacy for PD-L1 positive and negative regions. Furthermore, the PD-L1 expression regions demonstrate interconnection throughout the tissue section. Leveraging this topological prior knowledge, we integrate a connectivity modeling module (CM module) within the MTSL-based region attention module (MRA module) to enhance the precision of MTSL-based region attention localization. This integration further improves the structural similarity between the segmentation results and the ground truth. Extensive visual and quantitative results demonstrate that our supervised-learning-guided MRA module produces more interpretable attention and the introduced CM module provides accurate positional attention to the MRA module. Compared to other state-of-the-art networks, MCRANet exhibits superior segmentation performance with a dice similarity coefficient (DSC) of 79.6 % on the lung squamous cell carcinoma (LUSC) PD-L1 status dataset.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.