scTCA:用于scDNA-seq数据归因和去噪的混合变换器-CNN架构。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhenhua Yu, Furui Liu, Yang Li
{"title":"scTCA:用于scDNA-seq数据归因和去噪的混合变换器-CNN架构。","authors":"Zhenhua Yu, Furui Liu, Yang Li","doi":"10.1093/bib/bbae577","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective in imputation and denoising of scDNA-seq data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551055/pdf/","citationCount":"0","resultStr":"{\"title\":\"scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data.\",\"authors\":\"Zhenhua Yu, Furui Liu, Yang Li\",\"doi\":\"10.1093/bib/bbae577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective in imputation and denoising of scDNA-seq data.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae577\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae577","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

单细胞DNA测序(scDNA-seq)已被广泛用于以单细胞分辨率揭示肿瘤拷贝数改变(CNA)。尽管可以从单细胞读数中准确检测出臂级 CNA,但由于读数具有高维度、高稀疏性和低信噪比的特点,因此很难精确识别病灶 CNA。这就迫切需要重建高质量的 scDNA-seq 数据。我们开发了一种名为 scTCA 的新方法,用于单细胞读数的归因和去噪,从而帮助臂级和病灶 CNA 的下游分析。scTCA 采用混合 Transformer-CNN 架构来识别基因间的局部和非局部相关性,从而精确恢复读数。与传统的变换器不同,scTCA 中的变换器模块是一个两级注意模块,包含一个逐步自注意层和一个窗口变换器,可以高效处理高维读数数据。我们通过在合成数据集和真实数据集上与先进技术的比较,展示了 scTCA 的卓越性能。结果表明,它在 scDNA-seq 数据的归因和去噪方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data.

Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective in imputation and denoising of scDNA-seq data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信