{"title":"mbDriver:根据时间序列微生物组数据识别微生物群落中的驱动微生物。","authors":"Xiaoxiu Tan, Feng Xue, Chenhong Zhang, Tao Wang","doi":"10.1093/bib/bbae580","DOIUrl":null,"url":null,"abstract":"<p><p>Alterations in human microbial communities are intricately linked to the onset and progression of diseases. Identifying the key microbes driving these community changes is crucial, as they may serve as valuable biomarkers for disease prevention, diagnosis, and treatment. However, there remains a need for further research to develop effective methods for addressing this critical task. This is primarily because defining the driver microbe requires consideration not only of each microbe's individual contributions but also their interactions. This paper introduces a novel framework, called mbDriver, for identifying driver microbes based on microbiome abundance data collected at discrete time points. mbDriver comprises three main components: (i) data preprocessing of time-series abundance data using smoothing splines based on the negative binomial distribution, (ii) parameter estimation for the generalized Lotka-Volterra (gLV) model using regularized least squares, and (iii) quantification of each microbe's contribution to the community's steady state by manipulating the causal graph implied by gLV equations. The performance of nonparametric spline-based denoising and regularized least squares estimation is comprehensively evaluated on simulated datasets, demonstrating superiority over existing methods. Furthermore, the practical applicability and effectiveness of mbDriver are showcased using a dietary fiber intervention dataset and an ulcerative colitis dataset. Notably, driver microbes identified in the dietary fiber intervention dataset exhibit significant effects on the abundances of short-chain fatty acids, while those identified in the ulcerative colitis dataset show a significant correlation with metabolism-related pathways.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551971/pdf/","citationCount":"0","resultStr":"{\"title\":\"mbDriver: identifying driver microbes in microbial communities based on time-series microbiome data.\",\"authors\":\"Xiaoxiu Tan, Feng Xue, Chenhong Zhang, Tao Wang\",\"doi\":\"10.1093/bib/bbae580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alterations in human microbial communities are intricately linked to the onset and progression of diseases. Identifying the key microbes driving these community changes is crucial, as they may serve as valuable biomarkers for disease prevention, diagnosis, and treatment. However, there remains a need for further research to develop effective methods for addressing this critical task. This is primarily because defining the driver microbe requires consideration not only of each microbe's individual contributions but also their interactions. This paper introduces a novel framework, called mbDriver, for identifying driver microbes based on microbiome abundance data collected at discrete time points. mbDriver comprises three main components: (i) data preprocessing of time-series abundance data using smoothing splines based on the negative binomial distribution, (ii) parameter estimation for the generalized Lotka-Volterra (gLV) model using regularized least squares, and (iii) quantification of each microbe's contribution to the community's steady state by manipulating the causal graph implied by gLV equations. The performance of nonparametric spline-based denoising and regularized least squares estimation is comprehensively evaluated on simulated datasets, demonstrating superiority over existing methods. Furthermore, the practical applicability and effectiveness of mbDriver are showcased using a dietary fiber intervention dataset and an ulcerative colitis dataset. Notably, driver microbes identified in the dietary fiber intervention dataset exhibit significant effects on the abundances of short-chain fatty acids, while those identified in the ulcerative colitis dataset show a significant correlation with metabolism-related pathways.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae580\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae580","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
mbDriver: identifying driver microbes in microbial communities based on time-series microbiome data.
Alterations in human microbial communities are intricately linked to the onset and progression of diseases. Identifying the key microbes driving these community changes is crucial, as they may serve as valuable biomarkers for disease prevention, diagnosis, and treatment. However, there remains a need for further research to develop effective methods for addressing this critical task. This is primarily because defining the driver microbe requires consideration not only of each microbe's individual contributions but also their interactions. This paper introduces a novel framework, called mbDriver, for identifying driver microbes based on microbiome abundance data collected at discrete time points. mbDriver comprises three main components: (i) data preprocessing of time-series abundance data using smoothing splines based on the negative binomial distribution, (ii) parameter estimation for the generalized Lotka-Volterra (gLV) model using regularized least squares, and (iii) quantification of each microbe's contribution to the community's steady state by manipulating the causal graph implied by gLV equations. The performance of nonparametric spline-based denoising and regularized least squares estimation is comprehensively evaluated on simulated datasets, demonstrating superiority over existing methods. Furthermore, the practical applicability and effectiveness of mbDriver are showcased using a dietary fiber intervention dataset and an ulcerative colitis dataset. Notably, driver microbes identified in the dietary fiber intervention dataset exhibit significant effects on the abundances of short-chain fatty acids, while those identified in the ulcerative colitis dataset show a significant correlation with metabolism-related pathways.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.