靶向肿瘤 NAC1 可减轻髓源性抑制细胞介导的免疫抑制,并增强卵巢癌的抗 PD-1 治疗效果。

IF 8.1 1区 医学 Q1 IMMUNOLOGY
Shunli Dong, Cong Ye, Bin Li, Fanglin Lv, Lu Zhang, Shumin Yang, Fang Wang, Mingxian Zhu, Mingxuan Zhou, Fanfan Guo, Zhenyun Li, Lei Peng, Cheng Ji, Xialiang Lu, Yan Cheng, Xingcong Ren, Youguo Chen, Jinhua Zhou, Jinming Yang, Yi Zhang
{"title":"靶向肿瘤 NAC1 可减轻髓源性抑制细胞介导的免疫抑制,并增强卵巢癌的抗 PD-1 治疗效果。","authors":"Shunli Dong, Cong Ye, Bin Li, Fanglin Lv, Lu Zhang, Shumin Yang, Fang Wang, Mingxian Zhu, Mingxuan Zhou, Fanfan Guo, Zhenyun Li, Lei Peng, Cheng Ji, Xialiang Lu, Yan Cheng, Xingcong Ren, Youguo Chen, Jinhua Zhou, Jinming Yang, Yi Zhang","doi":"10.1158/2326-6066.CIR-24-0084","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer with a low rate of response to immunotherapy such as immune checkpoint blockade (ICB) therapy. Here, we report that nucleus accumbens-associated protein 1 (NAC1), a putative driver of EOC, has a critical role in immune evasion. We showed in murine ovarian cancer models that depleting or inhibiting tumoral NAC1 reduced the recruitment and immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TME), led to significant increases of cytotoxic tumor-infiltrating CD8+ T cells, and promoted antitumor immunity and suppressed tumor progression. We further showed that tumoral NAC1 directly enhanced the transcription of CXCL16, by binding to CXCR6, thereby promoting MDSC recruitment to the tumor. Moreover, lipid C20:1T produced by NAC1-expressing tumor cells fueled oxidative metabolism of MDSCs and promoted their immune-suppressive function. We also showed that NIC3, a small molecule inhibitor of NAC1, was able to sensitize mice-bearing NAC1-expressing ovarian tumors to anti-PD-1 therapy. Our study reveals a critical role for NAC1 in controlling tumor infiltration of MDSCs and in modulating the efficacy of ICB therapy. Thus, targeting of NAC1 may be exploited to sensitize ovarian cancer to immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting of tumoral NAC1 mitigates myeloid-derived suppressor cell-mediated immunosuppression and potentiates anti-PD-1 therapy in ovarian cancer.\",\"authors\":\"Shunli Dong, Cong Ye, Bin Li, Fanglin Lv, Lu Zhang, Shumin Yang, Fang Wang, Mingxian Zhu, Mingxuan Zhou, Fanfan Guo, Zhenyun Li, Lei Peng, Cheng Ji, Xialiang Lu, Yan Cheng, Xingcong Ren, Youguo Chen, Jinhua Zhou, Jinming Yang, Yi Zhang\",\"doi\":\"10.1158/2326-6066.CIR-24-0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer with a low rate of response to immunotherapy such as immune checkpoint blockade (ICB) therapy. Here, we report that nucleus accumbens-associated protein 1 (NAC1), a putative driver of EOC, has a critical role in immune evasion. We showed in murine ovarian cancer models that depleting or inhibiting tumoral NAC1 reduced the recruitment and immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TME), led to significant increases of cytotoxic tumor-infiltrating CD8+ T cells, and promoted antitumor immunity and suppressed tumor progression. We further showed that tumoral NAC1 directly enhanced the transcription of CXCL16, by binding to CXCR6, thereby promoting MDSC recruitment to the tumor. Moreover, lipid C20:1T produced by NAC1-expressing tumor cells fueled oxidative metabolism of MDSCs and promoted their immune-suppressive function. We also showed that NIC3, a small molecule inhibitor of NAC1, was able to sensitize mice-bearing NAC1-expressing ovarian tumors to anti-PD-1 therapy. Our study reveals a critical role for NAC1 in controlling tumor infiltration of MDSCs and in modulating the efficacy of ICB therapy. Thus, targeting of NAC1 may be exploited to sensitize ovarian cancer to immunotherapy.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-24-0084\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0084","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

上皮性卵巢癌(EOC)是最常见的卵巢癌类型,对免疫检查点阻断疗法(ICB)等免疫疗法的反应率很低。在这里,我们报告说,EOC 的推定驱动因子--核团相关蛋白 1(NAC1)在免疫逃避中起着至关重要的作用。我们在小鼠卵巢癌模型中发现,消耗或抑制肿瘤NAC1可减少肿瘤微环境(TME)中髓源抑制细胞(MDSCs)的招募和免疫抑制功能,导致细胞毒性肿瘤浸润CD8+ T细胞显著增加,并促进抗肿瘤免疫和抑制肿瘤进展。我们进一步发现,肿瘤NAC1通过与CXCR6结合,直接增强了CXCL16的转录,从而促进了MDSC向肿瘤的招募。此外,表达 NAC1 的肿瘤细胞产生的脂质 C20:1T 促进了 MDSCs 的氧化代谢,增强了其免疫抑制功能。我们还发现,NAC1 的小分子抑制剂 NIC3 能够使小鼠体内表达 NAC1 的卵巢肿瘤对抗 PD-1 治疗敏感。我们的研究揭示了NAC1在控制肿瘤MDSCs浸润和调节ICB疗法疗效方面的关键作用。因此,可以利用 NAC1 靶点使卵巢癌对免疫疗法敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting of tumoral NAC1 mitigates myeloid-derived suppressor cell-mediated immunosuppression and potentiates anti-PD-1 therapy in ovarian cancer.

Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer with a low rate of response to immunotherapy such as immune checkpoint blockade (ICB) therapy. Here, we report that nucleus accumbens-associated protein 1 (NAC1), a putative driver of EOC, has a critical role in immune evasion. We showed in murine ovarian cancer models that depleting or inhibiting tumoral NAC1 reduced the recruitment and immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TME), led to significant increases of cytotoxic tumor-infiltrating CD8+ T cells, and promoted antitumor immunity and suppressed tumor progression. We further showed that tumoral NAC1 directly enhanced the transcription of CXCL16, by binding to CXCR6, thereby promoting MDSC recruitment to the tumor. Moreover, lipid C20:1T produced by NAC1-expressing tumor cells fueled oxidative metabolism of MDSCs and promoted their immune-suppressive function. We also showed that NIC3, a small molecule inhibitor of NAC1, was able to sensitize mice-bearing NAC1-expressing ovarian tumors to anti-PD-1 therapy. Our study reveals a critical role for NAC1 in controlling tumor infiltration of MDSCs and in modulating the efficacy of ICB therapy. Thus, targeting of NAC1 may be exploited to sensitize ovarian cancer to immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信