{"title":"基于统计学原理自动检测 ACR CT 模型中的低对比度物体,用于测量 CT 图像的对比度-噪声比。","authors":"Choirul Anam, Riska Amilia, Ariij Naufal, Toshioh Fujibuchi, Geoff Dougherty","doi":"10.1088/2057-1976/ad90e9","DOIUrl":null,"url":null,"abstract":"<p><p><i>Purpose</i>. This study aimed to develop a new method for automated contrast-to-noise ratio (CNR) measurement using the low-contrast object in the ACR computed tomography (CT) phantom.<i>Methods</i>. The proposed method for CNR measurement was based on statistical criteria. A region of interest (ROI) was placed in a specific radial location and was then rotated around 360° in increments of 2°. At each position, the average CT number within the ROI was calculated. After one complete rotation, a profile of the average CT number around the full rotation was obtained. The center coordinate of the low-contrast object was determined from the maximum value of the profile. The CNR was calculated based on the average CT number and noise within the ROI in the low-contrast object and the ROI in the background, i.e., at the center of the phantom. The proposed method was used to evaluate CNR from images scanned with various phantom rotations, images with various noise levels (tube currents), and images from 25 CT scanners. The results were compared to a previous method based on a threshold approach.<i>Results</i>. The proposed method successfully placed the ROI properly in the center of a low-contrast object for variations of phantom rotation and tube current, whereas was not properly located in the center of the low-contrast object using the previous method. In addition, from 325 image samples of the 25 CT scanners, the proposed method successfully (100%) located the ROI within the low-contrast objects of all images used. The success rate of the previous method was only 58%.<i>Conclusion</i>. A new method for measuring CNR in the ACR CT phantom has been proposed and implemented. It is more powerful than a previous method based on a threshold approach.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical-based automatic detection of a low-contrast object in the ACR CT phantom for measuring contrast-to-noise ratio of CT images.\",\"authors\":\"Choirul Anam, Riska Amilia, Ariij Naufal, Toshioh Fujibuchi, Geoff Dougherty\",\"doi\":\"10.1088/2057-1976/ad90e9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Purpose</i>. This study aimed to develop a new method for automated contrast-to-noise ratio (CNR) measurement using the low-contrast object in the ACR computed tomography (CT) phantom.<i>Methods</i>. The proposed method for CNR measurement was based on statistical criteria. A region of interest (ROI) was placed in a specific radial location and was then rotated around 360° in increments of 2°. At each position, the average CT number within the ROI was calculated. After one complete rotation, a profile of the average CT number around the full rotation was obtained. The center coordinate of the low-contrast object was determined from the maximum value of the profile. The CNR was calculated based on the average CT number and noise within the ROI in the low-contrast object and the ROI in the background, i.e., at the center of the phantom. The proposed method was used to evaluate CNR from images scanned with various phantom rotations, images with various noise levels (tube currents), and images from 25 CT scanners. The results were compared to a previous method based on a threshold approach.<i>Results</i>. The proposed method successfully placed the ROI properly in the center of a low-contrast object for variations of phantom rotation and tube current, whereas was not properly located in the center of the low-contrast object using the previous method. In addition, from 325 image samples of the 25 CT scanners, the proposed method successfully (100%) located the ROI within the low-contrast objects of all images used. The success rate of the previous method was only 58%.<i>Conclusion</i>. A new method for measuring CNR in the ACR CT phantom has been proposed and implemented. It is more powerful than a previous method based on a threshold approach.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad90e9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad90e9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A statistical-based automatic detection of a low-contrast object in the ACR CT phantom for measuring contrast-to-noise ratio of CT images.
Purpose. This study aimed to develop a new method for automated contrast-to-noise ratio (CNR) measurement using the low-contrast object in the ACR computed tomography (CT) phantom.Methods. The proposed method for CNR measurement was based on statistical criteria. A region of interest (ROI) was placed in a specific radial location and was then rotated around 360° in increments of 2°. At each position, the average CT number within the ROI was calculated. After one complete rotation, a profile of the average CT number around the full rotation was obtained. The center coordinate of the low-contrast object was determined from the maximum value of the profile. The CNR was calculated based on the average CT number and noise within the ROI in the low-contrast object and the ROI in the background, i.e., at the center of the phantom. The proposed method was used to evaluate CNR from images scanned with various phantom rotations, images with various noise levels (tube currents), and images from 25 CT scanners. The results were compared to a previous method based on a threshold approach.Results. The proposed method successfully placed the ROI properly in the center of a low-contrast object for variations of phantom rotation and tube current, whereas was not properly located in the center of the low-contrast object using the previous method. In addition, from 325 image samples of the 25 CT scanners, the proposed method successfully (100%) located the ROI within the low-contrast objects of all images used. The success rate of the previous method was only 58%.Conclusion. A new method for measuring CNR in the ACR CT phantom has been proposed and implemented. It is more powerful than a previous method based on a threshold approach.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.