Anabela Ferreira , Stéphen Manon , Akandé Rouchidane Eyitayo , Susana R. Chaves , Manuela Côrte-Real , Ana Preto , Maria João Sousa
{"title":"致癌 KRAS 突变可调节 BAX 介导的细胞死亡。","authors":"Anabela Ferreira , Stéphen Manon , Akandé Rouchidane Eyitayo , Susana R. Chaves , Manuela Côrte-Real , Ana Preto , Maria João Sousa","doi":"10.1016/j.bbamcr.2024.119872","DOIUrl":null,"url":null,"abstract":"<div><div>Kirsten rat sarcoma viral oncogene homolog (KRAS) belongs to the GTPase RAS superfamily, which regulates several cell-signaling pathways involved in the control of important cellular functions, including apoptosis. Oncogenic mutations in KRAS are considered the most common gain-of-function mutations, affecting 30–50 % of colorectal cancer (CRC) patients. While RAS proteins usually play an anti-apoptotic role, little is known about the involvement of KRAS mutations in apoptosis regulation. Here, we aimed to elucidate the role of mutated human KRAS in the regulation of BAX, a key pro-apoptotic member of the Bcl-2 family. For this purpose, we took advantage of the simpler yeast model <em>Saccharomyces cerevisiae</em>, using cells deficient in the main yeast RAS isoform (<em>ras2</em>Δ) co-expressing wild-type KRAS (KRAS<sup>WT</sup>) or the most frequent KRAS mutations found in CRC - KRAS<sup>G12D</sup>, KRAS<sup>G12V</sup> or KRAS<sup>G13D</sup>, along with human BAX. We show that, in comparison with KRAS<sup>WT</sup>, KRAS mutants confer resistance to BAX-induced death and cytochrome <em>c</em> (cyt <em>c</em>) release. The modulation of BAX by KRAS isoforms seems to result from a direct interaction between these proteins, as they co-localize at the mitochondria and there is evidence they may physically interact. We further show that acetic acid significantly increased cell death in cells expressing BAX and co-expressing oncogenic KRAS mutants, but not KRAS<sup>WT</sup>. This suggests a potential mechanism explaining the increased sensitivity of CRC cells harboring a KRAS-activated pathway to acetate. These findings contribute to a clearer understanding of how KRAS regulate BAX function, a relevant aspect in tumor progression.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 1","pages":"Article 119872"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oncogenic KRAS mutations modulate BAX-mediated cell death\",\"authors\":\"Anabela Ferreira , Stéphen Manon , Akandé Rouchidane Eyitayo , Susana R. Chaves , Manuela Côrte-Real , Ana Preto , Maria João Sousa\",\"doi\":\"10.1016/j.bbamcr.2024.119872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kirsten rat sarcoma viral oncogene homolog (KRAS) belongs to the GTPase RAS superfamily, which regulates several cell-signaling pathways involved in the control of important cellular functions, including apoptosis. Oncogenic mutations in KRAS are considered the most common gain-of-function mutations, affecting 30–50 % of colorectal cancer (CRC) patients. While RAS proteins usually play an anti-apoptotic role, little is known about the involvement of KRAS mutations in apoptosis regulation. Here, we aimed to elucidate the role of mutated human KRAS in the regulation of BAX, a key pro-apoptotic member of the Bcl-2 family. For this purpose, we took advantage of the simpler yeast model <em>Saccharomyces cerevisiae</em>, using cells deficient in the main yeast RAS isoform (<em>ras2</em>Δ) co-expressing wild-type KRAS (KRAS<sup>WT</sup>) or the most frequent KRAS mutations found in CRC - KRAS<sup>G12D</sup>, KRAS<sup>G12V</sup> or KRAS<sup>G13D</sup>, along with human BAX. We show that, in comparison with KRAS<sup>WT</sup>, KRAS mutants confer resistance to BAX-induced death and cytochrome <em>c</em> (cyt <em>c</em>) release. The modulation of BAX by KRAS isoforms seems to result from a direct interaction between these proteins, as they co-localize at the mitochondria and there is evidence they may physically interact. We further show that acetic acid significantly increased cell death in cells expressing BAX and co-expressing oncogenic KRAS mutants, but not KRAS<sup>WT</sup>. This suggests a potential mechanism explaining the increased sensitivity of CRC cells harboring a KRAS-activated pathway to acetate. These findings contribute to a clearer understanding of how KRAS regulate BAX function, a relevant aspect in tumor progression.</div></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1872 1\",\"pages\":\"Article 119872\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488924002155\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924002155","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Oncogenic KRAS mutations modulate BAX-mediated cell death
Kirsten rat sarcoma viral oncogene homolog (KRAS) belongs to the GTPase RAS superfamily, which regulates several cell-signaling pathways involved in the control of important cellular functions, including apoptosis. Oncogenic mutations in KRAS are considered the most common gain-of-function mutations, affecting 30–50 % of colorectal cancer (CRC) patients. While RAS proteins usually play an anti-apoptotic role, little is known about the involvement of KRAS mutations in apoptosis regulation. Here, we aimed to elucidate the role of mutated human KRAS in the regulation of BAX, a key pro-apoptotic member of the Bcl-2 family. For this purpose, we took advantage of the simpler yeast model Saccharomyces cerevisiae, using cells deficient in the main yeast RAS isoform (ras2Δ) co-expressing wild-type KRAS (KRASWT) or the most frequent KRAS mutations found in CRC - KRASG12D, KRASG12V or KRASG13D, along with human BAX. We show that, in comparison with KRASWT, KRAS mutants confer resistance to BAX-induced death and cytochrome c (cyt c) release. The modulation of BAX by KRAS isoforms seems to result from a direct interaction between these proteins, as they co-localize at the mitochondria and there is evidence they may physically interact. We further show that acetic acid significantly increased cell death in cells expressing BAX and co-expressing oncogenic KRAS mutants, but not KRASWT. This suggests a potential mechanism explaining the increased sensitivity of CRC cells harboring a KRAS-activated pathway to acetate. These findings contribute to a clearer understanding of how KRAS regulate BAX function, a relevant aspect in tumor progression.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.