{"title":"铟暴露大鼠肺组织基因表达的芯片分析:S100 蛋白在肺部疾病中的可能作用。","authors":"Yusuke Hiraku, Akiyo Tanaka, Masato Yamamoto, Minori Nakatani, Mayu Kobayashi, Eiki Kimura, Sharif Ahmed, Mariko Murata","doi":"10.1007/s00204-024-03897-x","DOIUrl":null,"url":null,"abstract":"<p><p>Indium compounds are used in manufacturing displays of mobile phones and televisions. These compounds cause interstitial pneumonia in workers and lung cancer in animals, but their precise mechanisms are unclear. In this study, we performed microarray analysis of gene expression in lung tissues of indium-exposed rats. Male Wistar rats (8-week-old) were exposed to indium oxide (In<sub>2</sub>O<sub>3</sub>, mean particle diameter 0.14 μm) and indium-tin oxide (ITO, mean particle diameter 0.95 μm) by intratracheal instillation (10 mg indium/kg body weight/instillation) twice a week and five times in total. These rats were sacrificed immediately, 3 weeks and 12 weeks after the last instillation. Hematoxylin and eosin and Masson's trichrome staining showed that indium compounds induced infiltration of neutrophils and macrophages into alveolar space, and fibrosis around bronchial epithelium and in alveolar wall. Microarray analysis revealed that In<sub>2</sub>O<sub>3</sub> and ITO significantly upregulated 233 and 676 genes at 12 weeks, respectively (> twofold, p < 0.05 by ANOVA + Tukey's test). In<sub>2</sub>O<sub>3</sub> and ITO largely upregulated Lcn2 (lipocalin-2) (49.4- and 91.8-fold), S100a9 (30.2- and 46.5-fold) and S100a8 (11.5- and 22.0-fold), respectively. Metascape database predicted that these genes participate in immunomodulatory and inflammatory responses. Real-time PCR confirmed that these genes were upregulated by indium compounds throughout the experiments. In Western blotting, S100A9 expression was significantly increased by indium exposure, whereas LCN2 expression was only slightly increased. Fluorescent immunohistochemistry revealed that S100A9 and S100A8 were expressed in alveolar epithelial cells and neutrophils in indium-exposed rats. These results suggest that S100 proteins contribute to indium-induced lung diseases via neutrophil-mediated inflammatory responses.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microarray analysis of gene expression in lung tissues of indium-exposed rats: possible roles of S100 proteins in lung diseases.\",\"authors\":\"Yusuke Hiraku, Akiyo Tanaka, Masato Yamamoto, Minori Nakatani, Mayu Kobayashi, Eiki Kimura, Sharif Ahmed, Mariko Murata\",\"doi\":\"10.1007/s00204-024-03897-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indium compounds are used in manufacturing displays of mobile phones and televisions. These compounds cause interstitial pneumonia in workers and lung cancer in animals, but their precise mechanisms are unclear. In this study, we performed microarray analysis of gene expression in lung tissues of indium-exposed rats. Male Wistar rats (8-week-old) were exposed to indium oxide (In<sub>2</sub>O<sub>3</sub>, mean particle diameter 0.14 μm) and indium-tin oxide (ITO, mean particle diameter 0.95 μm) by intratracheal instillation (10 mg indium/kg body weight/instillation) twice a week and five times in total. These rats were sacrificed immediately, 3 weeks and 12 weeks after the last instillation. Hematoxylin and eosin and Masson's trichrome staining showed that indium compounds induced infiltration of neutrophils and macrophages into alveolar space, and fibrosis around bronchial epithelium and in alveolar wall. Microarray analysis revealed that In<sub>2</sub>O<sub>3</sub> and ITO significantly upregulated 233 and 676 genes at 12 weeks, respectively (> twofold, p < 0.05 by ANOVA + Tukey's test). In<sub>2</sub>O<sub>3</sub> and ITO largely upregulated Lcn2 (lipocalin-2) (49.4- and 91.8-fold), S100a9 (30.2- and 46.5-fold) and S100a8 (11.5- and 22.0-fold), respectively. Metascape database predicted that these genes participate in immunomodulatory and inflammatory responses. Real-time PCR confirmed that these genes were upregulated by indium compounds throughout the experiments. In Western blotting, S100A9 expression was significantly increased by indium exposure, whereas LCN2 expression was only slightly increased. Fluorescent immunohistochemistry revealed that S100A9 and S100A8 were expressed in alveolar epithelial cells and neutrophils in indium-exposed rats. These results suggest that S100 proteins contribute to indium-induced lung diseases via neutrophil-mediated inflammatory responses.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-024-03897-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-024-03897-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Microarray analysis of gene expression in lung tissues of indium-exposed rats: possible roles of S100 proteins in lung diseases.
Indium compounds are used in manufacturing displays of mobile phones and televisions. These compounds cause interstitial pneumonia in workers and lung cancer in animals, but their precise mechanisms are unclear. In this study, we performed microarray analysis of gene expression in lung tissues of indium-exposed rats. Male Wistar rats (8-week-old) were exposed to indium oxide (In2O3, mean particle diameter 0.14 μm) and indium-tin oxide (ITO, mean particle diameter 0.95 μm) by intratracheal instillation (10 mg indium/kg body weight/instillation) twice a week and five times in total. These rats were sacrificed immediately, 3 weeks and 12 weeks after the last instillation. Hematoxylin and eosin and Masson's trichrome staining showed that indium compounds induced infiltration of neutrophils and macrophages into alveolar space, and fibrosis around bronchial epithelium and in alveolar wall. Microarray analysis revealed that In2O3 and ITO significantly upregulated 233 and 676 genes at 12 weeks, respectively (> twofold, p < 0.05 by ANOVA + Tukey's test). In2O3 and ITO largely upregulated Lcn2 (lipocalin-2) (49.4- and 91.8-fold), S100a9 (30.2- and 46.5-fold) and S100a8 (11.5- and 22.0-fold), respectively. Metascape database predicted that these genes participate in immunomodulatory and inflammatory responses. Real-time PCR confirmed that these genes were upregulated by indium compounds throughout the experiments. In Western blotting, S100A9 expression was significantly increased by indium exposure, whereas LCN2 expression was only slightly increased. Fluorescent immunohistochemistry revealed that S100A9 and S100A8 were expressed in alveolar epithelial cells and neutrophils in indium-exposed rats. These results suggest that S100 proteins contribute to indium-induced lung diseases via neutrophil-mediated inflammatory responses.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.