{"title":"小麦面筋-大豆蛋白比例和水分水平对用于汉堡肉饼的高水分挤压肉类似物的影响。","authors":"Aishwary Dubey, Arun Kumar, Narpinder Singh","doi":"10.1111/1750-3841.17450","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the growing demand for plant-based meat alternatives, this study explores the impact of incorporating wheat gluten (WG) into soy protein isolate (SPI) on both the proximate and functional properties of protein blends. The research also examines the effects of high moisture extrusion processing, varying feed moisture levels (60%, 65%, and 70%), and WG-SPI blends on extruder response, as well as the textural, rheological, and solubility characteristics of the resulting extruded meat analogues. Moreover, the prime objective was to gain insights into the impact of using HMMA made at different ratios and feed moisture levels on plant-based burgers. As the WG incorporation level increased in SPI, the RVA viscosity, water absorption, and oil absorption capacities, and foaming stability exhibited a decrease while foaming capacity increased. As feed moisture and WG incorporation levels in SPI increased, the system parameters, rheological, and textural parameters of high moisture extruded meat analogs decreased. WG25-SPI75 showed the highest degree of texturization or sulfide bonds, and its extruded meat analogues at 60% feed moisture level burger patties resemble a similar textural to a chicken burger patty. This study is pivotal in understanding how wheat gluten in SPIs and feeding moisture level influence the textural and rheology properties of HMMA.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of wheat gluten-soy protein ratios and moisture levels on high-moisture extruded meat analogues for burger patties.\",\"authors\":\"Aishwary Dubey, Arun Kumar, Narpinder Singh\",\"doi\":\"10.1111/1750-3841.17450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the growing demand for plant-based meat alternatives, this study explores the impact of incorporating wheat gluten (WG) into soy protein isolate (SPI) on both the proximate and functional properties of protein blends. The research also examines the effects of high moisture extrusion processing, varying feed moisture levels (60%, 65%, and 70%), and WG-SPI blends on extruder response, as well as the textural, rheological, and solubility characteristics of the resulting extruded meat analogues. Moreover, the prime objective was to gain insights into the impact of using HMMA made at different ratios and feed moisture levels on plant-based burgers. As the WG incorporation level increased in SPI, the RVA viscosity, water absorption, and oil absorption capacities, and foaming stability exhibited a decrease while foaming capacity increased. As feed moisture and WG incorporation levels in SPI increased, the system parameters, rheological, and textural parameters of high moisture extruded meat analogs decreased. WG25-SPI75 showed the highest degree of texturization or sulfide bonds, and its extruded meat analogues at 60% feed moisture level burger patties resemble a similar textural to a chicken burger patty. This study is pivotal in understanding how wheat gluten in SPIs and feeding moisture level influence the textural and rheology properties of HMMA.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1750-3841.17450\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17450","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effects of wheat gluten-soy protein ratios and moisture levels on high-moisture extruded meat analogues for burger patties.
In response to the growing demand for plant-based meat alternatives, this study explores the impact of incorporating wheat gluten (WG) into soy protein isolate (SPI) on both the proximate and functional properties of protein blends. The research also examines the effects of high moisture extrusion processing, varying feed moisture levels (60%, 65%, and 70%), and WG-SPI blends on extruder response, as well as the textural, rheological, and solubility characteristics of the resulting extruded meat analogues. Moreover, the prime objective was to gain insights into the impact of using HMMA made at different ratios and feed moisture levels on plant-based burgers. As the WG incorporation level increased in SPI, the RVA viscosity, water absorption, and oil absorption capacities, and foaming stability exhibited a decrease while foaming capacity increased. As feed moisture and WG incorporation levels in SPI increased, the system parameters, rheological, and textural parameters of high moisture extruded meat analogs decreased. WG25-SPI75 showed the highest degree of texturization or sulfide bonds, and its extruded meat analogues at 60% feed moisture level burger patties resemble a similar textural to a chicken burger patty. This study is pivotal in understanding how wheat gluten in SPIs and feeding moisture level influence the textural and rheology properties of HMMA.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.