Chao-Wen Bai, Bo Tian, Ming-Chao Zhang, Qin Qin, Xin Shi, Xi Yang, Xiang Gao, Xiao-Zhong Zhou, Hua-Jian Shan, Jin-Yu Bai
{"title":"靶向 NAMPT-OPA1 治疗老年性骨质疏松症。","authors":"Chao-Wen Bai, Bo Tian, Ming-Chao Zhang, Qin Qin, Xin Shi, Xi Yang, Xiang Gao, Xiao-Zhong Zhou, Hua-Jian Shan, Jin-Yu Bai","doi":"10.1111/acel.14400","DOIUrl":null,"url":null,"abstract":"<p><p>Senescence of bone marrow mesenchymal stem cells (BMSCs) impairs their stemness and osteogenic differentiation, which is the principal cause of senile osteoporosis (SOP). Imbalances in nicotinamide phosphoribosyltransferase (NAMPT) homeostasis have been linked to aging and various diseases. Herein, reduction of NAMPT and impaired osteogenesis were observed in BMSCs from aged human and mouse. Knockdown of Nampt in BMSCs promotes lipogenic differentiation and increases age-related bone loss. Overexpression of Nampt ameliorates the senescence-associated (SA) phenotypes in BMSCs derived from aged mice, as well as promoting osteogenic potential. Mechanistically, NAMPT inhibits BMSCs senescence by facilitating OPA1 expression, which is essential for mitochondrial dynamics. The defect of NAMPT reduced mitochondrial membrane potential, interfered with mitochondrial fusion,and increased SA protein and phenotypes. More importantly, we have confirmed that P7C3, the NAMPT activator, is a novel strategy for reducing SOP bone loss. P7C3 treatment significantly prevents BMSCs senescence by improving mitochondrial function through the NAMPT-OPA1 signaling axis. Taken together, these results reveal that NAMPT is a regulator of BMSCs senescence and osteogenic differentiation. P7C3 is a novel molecule drug to prevent the pathological progression of SOP.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14400"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting NAMPT-OPA1 for treatment of senile osteoporosis.\",\"authors\":\"Chao-Wen Bai, Bo Tian, Ming-Chao Zhang, Qin Qin, Xin Shi, Xi Yang, Xiang Gao, Xiao-Zhong Zhou, Hua-Jian Shan, Jin-Yu Bai\",\"doi\":\"10.1111/acel.14400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Senescence of bone marrow mesenchymal stem cells (BMSCs) impairs their stemness and osteogenic differentiation, which is the principal cause of senile osteoporosis (SOP). Imbalances in nicotinamide phosphoribosyltransferase (NAMPT) homeostasis have been linked to aging and various diseases. Herein, reduction of NAMPT and impaired osteogenesis were observed in BMSCs from aged human and mouse. Knockdown of Nampt in BMSCs promotes lipogenic differentiation and increases age-related bone loss. Overexpression of Nampt ameliorates the senescence-associated (SA) phenotypes in BMSCs derived from aged mice, as well as promoting osteogenic potential. Mechanistically, NAMPT inhibits BMSCs senescence by facilitating OPA1 expression, which is essential for mitochondrial dynamics. The defect of NAMPT reduced mitochondrial membrane potential, interfered with mitochondrial fusion,and increased SA protein and phenotypes. More importantly, we have confirmed that P7C3, the NAMPT activator, is a novel strategy for reducing SOP bone loss. P7C3 treatment significantly prevents BMSCs senescence by improving mitochondrial function through the NAMPT-OPA1 signaling axis. Taken together, these results reveal that NAMPT is a regulator of BMSCs senescence and osteogenic differentiation. P7C3 is a novel molecule drug to prevent the pathological progression of SOP.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14400\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14400\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14400","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Targeting NAMPT-OPA1 for treatment of senile osteoporosis.
Senescence of bone marrow mesenchymal stem cells (BMSCs) impairs their stemness and osteogenic differentiation, which is the principal cause of senile osteoporosis (SOP). Imbalances in nicotinamide phosphoribosyltransferase (NAMPT) homeostasis have been linked to aging and various diseases. Herein, reduction of NAMPT and impaired osteogenesis were observed in BMSCs from aged human and mouse. Knockdown of Nampt in BMSCs promotes lipogenic differentiation and increases age-related bone loss. Overexpression of Nampt ameliorates the senescence-associated (SA) phenotypes in BMSCs derived from aged mice, as well as promoting osteogenic potential. Mechanistically, NAMPT inhibits BMSCs senescence by facilitating OPA1 expression, which is essential for mitochondrial dynamics. The defect of NAMPT reduced mitochondrial membrane potential, interfered with mitochondrial fusion,and increased SA protein and phenotypes. More importantly, we have confirmed that P7C3, the NAMPT activator, is a novel strategy for reducing SOP bone loss. P7C3 treatment significantly prevents BMSCs senescence by improving mitochondrial function through the NAMPT-OPA1 signaling axis. Taken together, these results reveal that NAMPT is a regulator of BMSCs senescence and osteogenic differentiation. P7C3 is a novel molecule drug to prevent the pathological progression of SOP.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.