通过 Pd1 和 Mo1 单原子位点组合实现生物质衍生物的低温催化转化。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Tang, George Yan, Shiran Zhang, Yuting Li, Luan Nguyen, Yasuhiro Iwasawa, Tomohiro Sakata, Christopher Andolina, Judith C Yang, Philippe Sautet, Franklin Feng Tao
{"title":"通过 Pd1 和 Mo1 单原子位点组合实现生物质衍生物的低温催化转化。","authors":"Yu Tang, George Yan, Shiran Zhang, Yuting Li, Luan Nguyen, Yasuhiro Iwasawa, Tomohiro Sakata, Christopher Andolina, Judith C Yang, Philippe Sautet, Franklin Feng Tao","doi":"10.1021/jacs.4c07075","DOIUrl":null,"url":null,"abstract":"<p><p>On-purpose atomic scale design of catalytic sites, specifically active and selective at low temperature for a target reaction, is a key challenge. Here, we report teamed Pd<sub>1</sub> and Mo<sub>1</sub> single-atom sites that exhibit high activity and selectivity for anisole hydrodeoxygenation to benzene at low temperatures, 100-150 °C, where a Pd metal nanoparticle catalyst or a MoO<sub>3</sub> nanoparticle catalyst is individually inactive. The catalysts built from Pd<sub>1</sub> or Mo<sub>1</sub> single-atom sites alone are much less effective, although the catalyst with Pd<sub>1</sub> sites shows some activity but low selectivity. Similarly, less dispersed nanoparticle catalysts are much less effective. Computational studies show that the Pd<sub>1</sub> and Mo<sub>1</sub> single-atom sites activate H<sub>2</sub> and anisole, respectively, and their combination triggers the hydrodeoxygenation of anisole in this low-temperature range. The Co<sub>3</sub>O<sub>4</sub> support is inactive for anisole hydrodeoxygenation by itself but participates in the chemistry by transferring H atoms from Pd<sub>1</sub> to the Mo<sub>1</sub> site. This finding opens an avenue for designing catalysts active for a target reaction channel such as conversion of biomass derivatives at a low temperature where neither metal nor oxide nanoparticles are.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd<sub>1</sub> and Mo<sub>1</sub> Single-Atom Sites.\",\"authors\":\"Yu Tang, George Yan, Shiran Zhang, Yuting Li, Luan Nguyen, Yasuhiro Iwasawa, Tomohiro Sakata, Christopher Andolina, Judith C Yang, Philippe Sautet, Franklin Feng Tao\",\"doi\":\"10.1021/jacs.4c07075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On-purpose atomic scale design of catalytic sites, specifically active and selective at low temperature for a target reaction, is a key challenge. Here, we report teamed Pd<sub>1</sub> and Mo<sub>1</sub> single-atom sites that exhibit high activity and selectivity for anisole hydrodeoxygenation to benzene at low temperatures, 100-150 °C, where a Pd metal nanoparticle catalyst or a MoO<sub>3</sub> nanoparticle catalyst is individually inactive. The catalysts built from Pd<sub>1</sub> or Mo<sub>1</sub> single-atom sites alone are much less effective, although the catalyst with Pd<sub>1</sub> sites shows some activity but low selectivity. Similarly, less dispersed nanoparticle catalysts are much less effective. Computational studies show that the Pd<sub>1</sub> and Mo<sub>1</sub> single-atom sites activate H<sub>2</sub> and anisole, respectively, and their combination triggers the hydrodeoxygenation of anisole in this low-temperature range. The Co<sub>3</sub>O<sub>4</sub> support is inactive for anisole hydrodeoxygenation by itself but participates in the chemistry by transferring H atoms from Pd<sub>1</sub> to the Mo<sub>1</sub> site. This finding opens an avenue for designing catalysts active for a target reaction channel such as conversion of biomass derivatives at a low temperature where neither metal nor oxide nanoparticles are.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c07075\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c07075","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在原子尺度上设计催化位点,使其在低温条件下对目标反应具有特定的活性和选择性,是一项关键挑战。在此,我们报告了团队设计的 Pd1 和 Mo1 单原子位点,它们在 100-150 ℃ 的低温条件下,对苯甲醚加氢脱氧生成苯具有高活性和选择性。而单独由 Pd1 或 Mo1 单原子位点组成的催化剂则效果较差,尽管带有 Pd1 位点的催化剂显示出一定的活性,但选择性较低。同样,分散程度较低的纳米粒子催化剂的效果也差得多。计算研究表明,Pd1 和 Mo1 单原子位点可分别激活 H2 和苯甲醚,它们的组合可在此低温范围内引发苯甲醚的加氢脱氧反应。Co3O4 支持物本身对苯甲醚的加氢脱氧反应不起作用,但通过将 H 原子从 Pd1 转移到 Mo1 位点参与了化学反应。这一发现为设计对目标反应通道(如生物质衍生物在低温下的转化)具有活力的催化剂开辟了一条途径,因为金属和氧化物纳米颗粒都不在低温条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd<sub>1</sub> and Mo<sub>1</sub> Single-Atom Sites.

Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd1 and Mo1 Single-Atom Sites.

On-purpose atomic scale design of catalytic sites, specifically active and selective at low temperature for a target reaction, is a key challenge. Here, we report teamed Pd1 and Mo1 single-atom sites that exhibit high activity and selectivity for anisole hydrodeoxygenation to benzene at low temperatures, 100-150 °C, where a Pd metal nanoparticle catalyst or a MoO3 nanoparticle catalyst is individually inactive. The catalysts built from Pd1 or Mo1 single-atom sites alone are much less effective, although the catalyst with Pd1 sites shows some activity but low selectivity. Similarly, less dispersed nanoparticle catalysts are much less effective. Computational studies show that the Pd1 and Mo1 single-atom sites activate H2 and anisole, respectively, and their combination triggers the hydrodeoxygenation of anisole in this low-temperature range. The Co3O4 support is inactive for anisole hydrodeoxygenation by itself but participates in the chemistry by transferring H atoms from Pd1 to the Mo1 site. This finding opens an avenue for designing catalysts active for a target reaction channel such as conversion of biomass derivatives at a low temperature where neither metal nor oxide nanoparticles are.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信