Silvia Juliana Vesga Martínez, Christopher P Rüger, Paul Kösling, Julian Schade, Sven Ehlert, Yury O Tsybin, Ralf Zimmermann
{"title":"在生物油的气相色谱-真空光离子化轨道阱质谱分析中破译硅烷化化合物的同位素精细结构","authors":"Silvia Juliana Vesga Martínez, Christopher P Rüger, Paul Kösling, Julian Schade, Sven Ehlert, Yury O Tsybin, Ralf Zimmermann","doi":"10.1021/jasms.4c00383","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce vacuum resonance-enhanced multiphoton ionization (REMPI) with high-resolution Orbitrap Fourier transform mass spectrometry (FTMS) for analyzing silylated polar compounds. UV laser radiation at 248 nm sensitively and selectively targets aromatic constituents, while high-resolution mass spectrometry (HRMS) enables high-performance mass spectrometric detection. This workflow enhances the detection confidence of polar constituents by identifying unique isotopologue patterns, including at the isotopic fine structure (IFS) level, in analytical standards and complex bio-oils. A direct and derivatized gas chromatography (GC) procedure on a polar standard component mixture allowed us to explore the general ionization and detection characteristics of REMPI FTMS. HRMS enabled the examination of the complex isotopologue profiles, revealing distinct patterns for the CHO<sub><i>x</i></sub>Si<sub><i>y</i></sub>-class compounds. Particularly in complex mixtures, this isobaric/isonucleonic complexity exceeded the classical mass resolution capabilities of the employed Orbitrap D30 series and prompted the usage of prolonged transients via an external data acquisition system. This procedure substantially improved mass spectrometric results by recording the unreduced time-domain transient data for up to 2 s. Notably, the ability to distinguish diagnostic isotopic pairs, such as <sup>12</sup>C/<sup>29</sup>Si vs <sup>13</sup>C/<sup>28</sup>Si with a mass split of ∼3.79 mDa and <sup>13</sup>C<sup>12</sup>C/<sup>28</sup>Si<sup>29</sup>Si vs <sup>13</sup>C<sub>2</sub>/<sup>28</sup>Si<sub>2</sub>, with an approximate mass difference of ∼3.32 mDa, demonstrates a significant and expected performance improvement. Finally, we benchmark the GC HRMS methodology to identify silylated oxygenated and nitrogen-containing constituents in ultracomplex bio-oil samples. The presented approach of utilizing the silicon isotope pattern and unique isotopologue mass splits for increasing attribution confidence can be applied beyond bio-oils toward the general GC analyses of polar oxygenates.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"3242-3255"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering Isotopic Fine Structures of Silylated Compounds in Gas Chromatography-Vacuum Photoionization Orbitrap Mass Spectrometry of Bio-Oils.\",\"authors\":\"Silvia Juliana Vesga Martínez, Christopher P Rüger, Paul Kösling, Julian Schade, Sven Ehlert, Yury O Tsybin, Ralf Zimmermann\",\"doi\":\"10.1021/jasms.4c00383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce vacuum resonance-enhanced multiphoton ionization (REMPI) with high-resolution Orbitrap Fourier transform mass spectrometry (FTMS) for analyzing silylated polar compounds. UV laser radiation at 248 nm sensitively and selectively targets aromatic constituents, while high-resolution mass spectrometry (HRMS) enables high-performance mass spectrometric detection. This workflow enhances the detection confidence of polar constituents by identifying unique isotopologue patterns, including at the isotopic fine structure (IFS) level, in analytical standards and complex bio-oils. A direct and derivatized gas chromatography (GC) procedure on a polar standard component mixture allowed us to explore the general ionization and detection characteristics of REMPI FTMS. HRMS enabled the examination of the complex isotopologue profiles, revealing distinct patterns for the CHO<sub><i>x</i></sub>Si<sub><i>y</i></sub>-class compounds. Particularly in complex mixtures, this isobaric/isonucleonic complexity exceeded the classical mass resolution capabilities of the employed Orbitrap D30 series and prompted the usage of prolonged transients via an external data acquisition system. This procedure substantially improved mass spectrometric results by recording the unreduced time-domain transient data for up to 2 s. Notably, the ability to distinguish diagnostic isotopic pairs, such as <sup>12</sup>C/<sup>29</sup>Si vs <sup>13</sup>C/<sup>28</sup>Si with a mass split of ∼3.79 mDa and <sup>13</sup>C<sup>12</sup>C/<sup>28</sup>Si<sup>29</sup>Si vs <sup>13</sup>C<sub>2</sub>/<sup>28</sup>Si<sub>2</sub>, with an approximate mass difference of ∼3.32 mDa, demonstrates a significant and expected performance improvement. Finally, we benchmark the GC HRMS methodology to identify silylated oxygenated and nitrogen-containing constituents in ultracomplex bio-oil samples. The presented approach of utilizing the silicon isotope pattern and unique isotopologue mass splits for increasing attribution confidence can be applied beyond bio-oils toward the general GC analyses of polar oxygenates.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"3242-3255\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00383\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00383","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Deciphering Isotopic Fine Structures of Silylated Compounds in Gas Chromatography-Vacuum Photoionization Orbitrap Mass Spectrometry of Bio-Oils.
We introduce vacuum resonance-enhanced multiphoton ionization (REMPI) with high-resolution Orbitrap Fourier transform mass spectrometry (FTMS) for analyzing silylated polar compounds. UV laser radiation at 248 nm sensitively and selectively targets aromatic constituents, while high-resolution mass spectrometry (HRMS) enables high-performance mass spectrometric detection. This workflow enhances the detection confidence of polar constituents by identifying unique isotopologue patterns, including at the isotopic fine structure (IFS) level, in analytical standards and complex bio-oils. A direct and derivatized gas chromatography (GC) procedure on a polar standard component mixture allowed us to explore the general ionization and detection characteristics of REMPI FTMS. HRMS enabled the examination of the complex isotopologue profiles, revealing distinct patterns for the CHOxSiy-class compounds. Particularly in complex mixtures, this isobaric/isonucleonic complexity exceeded the classical mass resolution capabilities of the employed Orbitrap D30 series and prompted the usage of prolonged transients via an external data acquisition system. This procedure substantially improved mass spectrometric results by recording the unreduced time-domain transient data for up to 2 s. Notably, the ability to distinguish diagnostic isotopic pairs, such as 12C/29Si vs 13C/28Si with a mass split of ∼3.79 mDa and 13C12C/28Si29Si vs 13C2/28Si2, with an approximate mass difference of ∼3.32 mDa, demonstrates a significant and expected performance improvement. Finally, we benchmark the GC HRMS methodology to identify silylated oxygenated and nitrogen-containing constituents in ultracomplex bio-oil samples. The presented approach of utilizing the silicon isotope pattern and unique isotopologue mass splits for increasing attribution confidence can be applied beyond bio-oils toward the general GC analyses of polar oxygenates.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives