通过掺杂高价钌来改变 Ni/FeO 物种的 d-p 轨道杂化,从而提高氧进化性能。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Tianmi Tang, Xue Bai, Xiaoqin Xu, Zhenlu Wang, Jingqi Guan
{"title":"通过掺杂高价钌来改变 Ni/FeO 物种的 d-p 轨道杂化,从而提高氧进化性能。","authors":"Tianmi Tang,&nbsp;Xue Bai,&nbsp;Xiaoqin Xu,&nbsp;Zhenlu Wang,&nbsp;Jingqi Guan","doi":"10.1016/j.jcis.2024.11.029","DOIUrl":null,"url":null,"abstract":"<div><div>The electron distribution of catalysts can be modulated by high-valence metal doping, thus enhancing the intrinsic activity. Herein, we adopt Ru modification to adjust the <em>d–p</em> orbital hybridization of Ni-Fe oxyhydroxides, significantly increasing the oxygen evolution reaction (OER) activity. The amorphous NiFe<sub>0.5</sub>Ru<sub>0.1</sub>O<sub>x</sub>H<sub>y</sub> catalyst synthesized by sol–gel method exhibits excellent OER activity, far superior to commercial RuO<sub>2</sub>. In situ Raman and XPS results confirm that the NiOOH/FeOOH active species gradually form with increasing applied voltage. Density functional theory (DFT) calculations reveal that high-valence Ru dopants can effectively regulate the hybridization of <em>d–p</em> orbital of Ni/Fe<img>O, significantly increase the electron density around Fermi level, promote charge transfer, make them have more anti-bonding orbitals, enhance the binding ability of active sites to intermediates, reduce the reaction energy barrier of the rate-determining step (H<sub>2</sub>O → *OH), and thus improve the OER activity. In addition, NiFeRuO<sub>x</sub>H<sub>y</sub> as a cathode catalyst in a rechargeable zinc-air battery shows an outstanding cycle life of 600 h. This study provides a promising hybrid orbital method for designing high-performance OER catalysts for water splitting and rechargeable zinc-air batteries.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 676-683"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modifying d–p orbital hybridization of Ni/FeO species by high-valence ruthenium doping to enhance oxygen evolution performance\",\"authors\":\"Tianmi Tang,&nbsp;Xue Bai,&nbsp;Xiaoqin Xu,&nbsp;Zhenlu Wang,&nbsp;Jingqi Guan\",\"doi\":\"10.1016/j.jcis.2024.11.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The electron distribution of catalysts can be modulated by high-valence metal doping, thus enhancing the intrinsic activity. Herein, we adopt Ru modification to adjust the <em>d–p</em> orbital hybridization of Ni-Fe oxyhydroxides, significantly increasing the oxygen evolution reaction (OER) activity. The amorphous NiFe<sub>0.5</sub>Ru<sub>0.1</sub>O<sub>x</sub>H<sub>y</sub> catalyst synthesized by sol–gel method exhibits excellent OER activity, far superior to commercial RuO<sub>2</sub>. In situ Raman and XPS results confirm that the NiOOH/FeOOH active species gradually form with increasing applied voltage. Density functional theory (DFT) calculations reveal that high-valence Ru dopants can effectively regulate the hybridization of <em>d–p</em> orbital of Ni/Fe<img>O, significantly increase the electron density around Fermi level, promote charge transfer, make them have more anti-bonding orbitals, enhance the binding ability of active sites to intermediates, reduce the reaction energy barrier of the rate-determining step (H<sub>2</sub>O → *OH), and thus improve the OER activity. In addition, NiFeRuO<sub>x</sub>H<sub>y</sub> as a cathode catalyst in a rechargeable zinc-air battery shows an outstanding cycle life of 600 h. This study provides a promising hybrid orbital method for designing high-performance OER catalysts for water splitting and rechargeable zinc-air batteries.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"680 \",\"pages\":\"Pages 676-683\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724025864\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025864","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

催化剂的电子分布可以通过高价金属掺杂进行调节,从而提高其内在活性。在此,我们采用 Ru 修饰来调整 Ni-Fe 氧氢化物的 d-p 轨道杂化,从而显著提高了氧进化反应(OER)的活性。采用溶胶-凝胶法合成的非晶态 NiFe0.5Ru0.1OxHy 催化剂表现出优异的 OER 活性,远远优于商用 RuO2。原位拉曼和 XPS 结果证实,随着施加电压的增加,NiOOH/FeOOH 活性物种逐渐形成。密度泛函理论(DFT)计算表明,高价Ru掺杂物能有效调节Ni/FeO的d-p轨道杂化,显著增加费米级附近的电子密度,促进电荷转移,使其具有更多的反键轨道,增强活性位点与中间产物的结合能力,降低决定速率步骤(H2O → *OH)的反应能垒,从而提高OER活性。此外,NiFeRuOxHy 作为可充电锌-空气电池的阴极催化剂,显示出 600 小时的出色循环寿命。这项研究为设计用于水分离和可充电锌-空气电池的高性能 OER 催化剂提供了一种前景广阔的混合轨道方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modifying d–p orbital hybridization of Ni/FeO species by high-valence ruthenium doping to enhance oxygen evolution performance

Modifying d–p orbital hybridization of Ni/FeO species by high-valence ruthenium doping to enhance oxygen evolution performance
The electron distribution of catalysts can be modulated by high-valence metal doping, thus enhancing the intrinsic activity. Herein, we adopt Ru modification to adjust the d–p orbital hybridization of Ni-Fe oxyhydroxides, significantly increasing the oxygen evolution reaction (OER) activity. The amorphous NiFe0.5Ru0.1OxHy catalyst synthesized by sol–gel method exhibits excellent OER activity, far superior to commercial RuO2. In situ Raman and XPS results confirm that the NiOOH/FeOOH active species gradually form with increasing applied voltage. Density functional theory (DFT) calculations reveal that high-valence Ru dopants can effectively regulate the hybridization of d–p orbital of Ni/FeO, significantly increase the electron density around Fermi level, promote charge transfer, make them have more anti-bonding orbitals, enhance the binding ability of active sites to intermediates, reduce the reaction energy barrier of the rate-determining step (H2O → *OH), and thus improve the OER activity. In addition, NiFeRuOxHy as a cathode catalyst in a rechargeable zinc-air battery shows an outstanding cycle life of 600 h. This study provides a promising hybrid orbital method for designing high-performance OER catalysts for water splitting and rechargeable zinc-air batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信