Yongxing Liu , Yanming Wang , Junxian Hou , Wangfei Shen , Xiaoliang Zhang , Zongqi Li , Ping Li , Xiying Fu , Yafeng Wang , Chunxia Wu
{"title":"改进 MXene 纳米片填料改性 PPO 复合材料的摩擦学性能。","authors":"Yongxing Liu , Yanming Wang , Junxian Hou , Wangfei Shen , Xiaoliang Zhang , Zongqi Li , Ping Li , Xiying Fu , Yafeng Wang , Chunxia Wu","doi":"10.1016/j.jcis.2024.11.016","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes, a class of two-dimensional (2D) nanomaterials, exhibit exceptional properties such as outstanding mechanical and thermal stability, along with diverse surface characteristics, making them highly promising in the tribology. However, their tendency to aggregate within the polymeric matrix adversely affects the tribological performance of the polymer. In this study, glass fiber (GF) surfaces were modified with polydopamine (PDA), allowing smaller MXene nanosheets to adhere to the GF surface, whereas the larger MXene nanosheets were dispersed throughout the matrix. This approach effectively enhanced the dispersion of MXene nanosheets in the polymeric matrix, facilitating the preparation of polyphenylene oxide (PPO)/MXene composite materials. Compared with the pure PPO sample, the results showed that the average friction coefficient and wear rate of the PPO/MXene composites were reduced by 46.25% and 98.34%, respectively, due to the distinct roles of different MXene nanosheet sizes in the polymeric matrix. Furthermore, a uniform lubricating film was formed during the friction of the polymer composite, enhancing its tribological performance. This study proposes a novel design strategy to enhance MXene nanosheet dispersion and optimize their lubricating properties.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 618-631"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved tribological properties of MXene nanosheet filler-modified PPO composites\",\"authors\":\"Yongxing Liu , Yanming Wang , Junxian Hou , Wangfei Shen , Xiaoliang Zhang , Zongqi Li , Ping Li , Xiying Fu , Yafeng Wang , Chunxia Wu\",\"doi\":\"10.1016/j.jcis.2024.11.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MXenes, a class of two-dimensional (2D) nanomaterials, exhibit exceptional properties such as outstanding mechanical and thermal stability, along with diverse surface characteristics, making them highly promising in the tribology. However, their tendency to aggregate within the polymeric matrix adversely affects the tribological performance of the polymer. In this study, glass fiber (GF) surfaces were modified with polydopamine (PDA), allowing smaller MXene nanosheets to adhere to the GF surface, whereas the larger MXene nanosheets were dispersed throughout the matrix. This approach effectively enhanced the dispersion of MXene nanosheets in the polymeric matrix, facilitating the preparation of polyphenylene oxide (PPO)/MXene composite materials. Compared with the pure PPO sample, the results showed that the average friction coefficient and wear rate of the PPO/MXene composites were reduced by 46.25% and 98.34%, respectively, due to the distinct roles of different MXene nanosheet sizes in the polymeric matrix. Furthermore, a uniform lubricating film was formed during the friction of the polymer composite, enhancing its tribological performance. This study proposes a novel design strategy to enhance MXene nanosheet dispersion and optimize their lubricating properties.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"680 \",\"pages\":\"Pages 618-631\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724025736\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025736","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Improved tribological properties of MXene nanosheet filler-modified PPO composites
MXenes, a class of two-dimensional (2D) nanomaterials, exhibit exceptional properties such as outstanding mechanical and thermal stability, along with diverse surface characteristics, making them highly promising in the tribology. However, their tendency to aggregate within the polymeric matrix adversely affects the tribological performance of the polymer. In this study, glass fiber (GF) surfaces were modified with polydopamine (PDA), allowing smaller MXene nanosheets to adhere to the GF surface, whereas the larger MXene nanosheets were dispersed throughout the matrix. This approach effectively enhanced the dispersion of MXene nanosheets in the polymeric matrix, facilitating the preparation of polyphenylene oxide (PPO)/MXene composite materials. Compared with the pure PPO sample, the results showed that the average friction coefficient and wear rate of the PPO/MXene composites were reduced by 46.25% and 98.34%, respectively, due to the distinct roles of different MXene nanosheet sizes in the polymeric matrix. Furthermore, a uniform lubricating film was formed during the friction of the polymer composite, enhancing its tribological performance. This study proposes a novel design strategy to enhance MXene nanosheet dispersion and optimize their lubricating properties.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies